首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extraction of ubiquinone from mitochondrial membranes produces alterations of ATPase activity including a reversible loss of oligomycin sensitivity which is restored by long-chain Q-homologs. Short-chain ubiquinones like Q3 produce a loss of oligomycin and dicyclohexylcarbodiimide (DCCD) sensitivity in submitochondrial particles. The effect shows uncompetitive or noncompetitive kinetics with respect to oligomycin or DCCD respectively. Long-chain ubiquinones have a competitive effect with Q3, thus restoring oligomycin sensitivity; they behave, however, in about the same way as Q3 in lowering the DCCD sensitivity in submitochondrial particles. On the basis of these observations we suggest that ubiquinone may be a physiological modulator of ATPase activity in the mitochondrial membrane.Abbreviations used: BHM, beef heart mitochondria; DCCD, dicyclohexylcarbodiimide; ETP, electron transfer particles (submitochondrial particles); Q, ubiquinone.  相似文献   

2.
Exposure of isolated rat liver cells to glucagon or dibutyryl cyclic AMP leads to a prompt decrease in the rate of cellular peroxide generation as evidenced by (i) a reduced rate of [14C]formate oxidation and (ii) a lowered steady-state concentration of catalase Compound I.  相似文献   

3.
4.
The concentration of the iron-sulphur (Fe-S) cluster 1b, present in complex I or soluble high-molecular-mass NADH dehydrogenase, was determined using different methods. It was found that direct double integration of the EPR signal at temperatures higher than 40 K, as is commonly used in this field of research, results in a considerable overestimation of the concentration of cluster 1b. It is demonstrated that this is caused by contributions from the relaxation-broadened signals of the Fe-S clusters 2-4 in the enzyme. The correct way for determining the intensity of the EPR signal of cluster 1b is by comparison with a simulated line shape. It is concluded that the concentration of cluster 1b is half that of cluster 2. This corroborates our proposal based on presteady-state kinetic and inhibitor-titration studies [Van Belzen, R., Van Gaalen, M. C. M., Cuypers, P. A. & Albracht S. P. J. (1990) Biochim. Biophys Acta 1017, 152-159] that the minimal functional unit of mitochondrial NADH:ubiquinone oxidoreductase must be a heterodimer.  相似文献   

5.
The mitochondrial glutamate-aspartate exchange carrier catalyzes the electrogenic exchange of intramitochondrial aspartate for extramitochondrial glutamate. Protons are cotransported with glutamate in a 1:1 ratio. In the present study, the effects of pH and glutamate concentration on glutamate entry into intact mitochondria were determined. Hydrogen ions were found to decrease the Km for glutamate entry. In addition, using glutamate-loaded submitochondrial particles, aspartate transport into the particles was measured as a function of internal and external glutamate concentrations, pH, and electrical potential across the membrane. Glutamate, was a competitive inhibitor of aspartate transport when both amino acids were present on the same side of the membrane, while H+ was a noncompetitive inhibitor of aspartate entry into the particles. A decrease in glutamate concentration on the inside of the particles brought about a parallel decrease in V and Km for aspartate outside of the particles, thus suggesting a ping-pong mechanism for the carrier. The uncoupling agent, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP), lowered both the Km and V of aspartate transport, while the effect on V was somewhat larger. Data obtained in the presence of KSCN was similar to that obtained with FCCP, and therefore it is concluded that both Km and V changes are dependent on a change of electrical potential across the membrane. A model for the carrier is proposed, which is consistent with the data presented. The model includes a single binding site specific for either glutamate or aspartate, and a separate binding site for the cotransported proton. The affinity of the binding site for protons is increased by simultaneous glutamate binding, but decreased by aspartate binding. The data suggest that an increase in the membrane potential increases the mobility of the charged carrier-aspartate complex, but also facilitates some additional step in the exchange cycle involving subsequent return of the carrier to the matrix side of the membrane. The additional membrane-potential-dependent step could be proton binding on the cytosolic side of the carrier.  相似文献   

6.
After fusion of small unilamellar phospholipid liposomes with mitochondrial inner membranes, the rate of electron transfer between membrane dehydrogenases and cytochrome c decreases as the average distance between integral membrane proteins increases, suggesting that electron transfer is mediated through a diffusional process in the membrane plane (Schneider, H., Lemasters, J. J., H?chli, M., and Hackenbrock, C. R. (1980)., J. Biol. Chem. 255, 3748-3756). The role of ubiquinone in this process was evaluated by fusing liposomes containing ubiquinone-10 or ubiquinone-6, with inner membranes. In control membranes enriched with phospholipid only, ubiquinol-cytochrome c reductase and NADH- and succinate-cytochrome c reductase activities decreased proportionally to the increase in bilayer lipid. These decreases were restored substantially in phospholipid plus ubiquinone-supplemented membranes. The degree to which restoration occurred was dependent upon the length of the isoprenoid side chain of the ubiquinone with the shorter chain length ubiquinone-6, always giving greater restoration than ubiquinone-10. It is concluded that electron transfer between flavin-linked dehydrogenases (Complexes I and II) and cytochrome bc1 (Complex III) occurs by independent, lateral diffusion of ubiquinone as well as independent, lateral diffusion of ubiquinone as well as the protein complexes within the plane of the membrane.  相似文献   

7.
Antimycin-inhibited bovine heart submitochondrial particles generate O2- and H2O2 with succinate as electron donor. H2O2 generation involves the action of the mitochondrial superoxide dismutase, in accordance with the McCord & Fridovich [(1969) j. biol. Chem. 244, 6049-6055] reaction mechanism. Removal of ubiquinone by acetone treatment decreases the ability of mitochondrial preparations to generate O2- and H2O2, whereas supplementation of the depleted membranes with ubiquinone enhances the peroxide-generating activity in the reconstituted membranes. Addition of superoxide dismutase to ubiquinone-reconstituted membranes is essential in order to obtain maximal rates of H2O2 generation since the acetone treatment of the membranes apparently inactivates (or removes) the mitochondrial superoxide dismutase. Parallel measurements of H2O2 production, succinate dehydrogenase and succinate-cytochrome c reductase activities show that peroxide generation by ubiquinone-supplemented membranes is a monotonous function of the reducible ubiquinone content, whereas the other two measured activities reach saturation at relatively low concentrations of reducible quinone. Alkaline treatment of submitochondrial particles causes a significant decrease in succinate dehydrogenase activity and succinate-dependent H2O2 production, which contrasts with the increase of peroxide production by the same particles with NADH as electron donor. Solubilized succinate dehydrogenase generates H2O2 at a much lower rate than the parent submitochondrial particles. It is postulated that ubisemiquinone (and ubiquinol) are chiefly responsible for the succinate-dependent peroxide production by the mitochondrial inner membrane.  相似文献   

8.
Cellular ubiquinone (UQ) is expected to act as an endogenous antioxidant against oxidative stress. To confirm this, UQ-reductases which are necessary to regenerate ubiquinol (UQH2) were investigated in rat tissue, and a novel NADPH-dependent UQ (NADPH-UQ) reductase was found in cytosol. The cytosolic NADPH-UQ reductase activity accounted for more than 80% of UQ-10 reduction by the rat liver homogenate in the presence of NADPH. Furthermore, the NADPH-UQ reductase activities in various tissues were correlated to the redox states of UQ in the corresponding tissues. Rat liver cytosol with NADPH protected lecithin liposomes containing UQ-10, as well as UQH2-10 from AMVN (2,2'-azobis(2,4-dimethylvaleronitrile))-induced lipid peroxidation. The enzyme purified from rat liver cytosol, reduced UQ-10 in lecithin liposomes at approximately the same rate as did cytosol. These results supported that cytosolic NADPH-UQ reductase is the enzyme responsible for nonmitochondrial UQ reduction acting as an endogenous antioxidant against oxidative stress. The antioxidant role of the UQ redox cycle and NADPH-UQ reductase was discussed in relation to other cellular NADPH-dependent antioxidant enzymes.  相似文献   

9.
The effects of Tinopals (cationic benzoxazoles) AMS-GX and 5BM-GX on NADH-oxidase, NADH:ferricyanide reductase, and NADH APAD+ transhydrogenase reactions and energy-linked NAD+ reduction by succinate, catalyzed by NADH:ubiquinone oxidoreductase (Complex I) in submitochondrial particles (SMP), were investigated. AMS-GX competes with NADH in NADH-oxidase and NADH:ferricyanide reductase reactions (K i = 1 M). 5BM-GX inhibits those reactions with mixed type with respect to NADH (K i = 5 M) mechanism. Neither compound affects reverse electron transfer from succinate to NAD+. The type of the Tinopals' effect on the NADH APAD+ transhydrogenase reaction, occurring with formation of a ternary complex, suggests the ordered binding of nucleotides by the enzyme during the reaction: AMS-GX and 5BM-GX inhibit this reaction uncompetitively just with respect to one of the substrates (APAD+ and NADH, correspondingly). The competition between 5BM-GX and APAD+ confirms that NADH is the first substrate bound by the enzyme. Direct and reverse electron transfer reactions demonstrate different specificity for NADH and NAD+ analogs: the nicotinamide part of the molecule is significant for reduced nucleotide binding. The data confirm the model suggesting that during NADH APAD+ reaction, occurring with ternary complex formation, reduced nucleotide interacts with the center participating in NADH oxidation, whereas oxidized nucleotide reacts with the center binding NAD+ in the reverse electron transfer reaction.  相似文献   

10.
11.
The kinetic behaviour of chicken liver and turkey liver aspartate aminotransferases (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1) was studied. Steady-state data were obtained from a wide range of concentrations of substrates and product L-glutamate. The data were fitted by rational functions of degree 1:1, 1:2 and 2:2 with respect to substrates and 0:1, 1:1, 0:2 and 1:2 with regard to product (L-glutamate), by using a non-linear regression program that guarantees the fit. The goodness of fit was improved by the use of a computer program that combines model discrimination parameter refinement and sequential experimental design. It was concluded that aspartate aminotransferase requires a minimum velocity equation of degree 2:2 for L-aspartate, 2:2 for 2-oxoglutarate and 1:2 for L-glutamate. Finally, a plausible kinetic mechanism that justifies these experimental results is proposed.  相似文献   

12.
Summary Separation of the two-folded lamina of the mitochondrial cristae occurs in mitochondria of spermatocytes and spermatids. Freeze-fracture exposes large areas of the inner and outer halves of the inner membrane. The surface of the outer half of the inner membrane is concave, with small numbers of intramembranous particles (IMPs). Its distinctive feature is the presence of protruding particles surrounding a pit. On the inner half of the inner membrane, there are large numbers of densely-packed, irregularly-distributed IMPs, among which regular pits are seen. Morphometric analysis and reconstructions suggest that these structures are channels in the mitochondrial membrane with an internal diameter of approximately 18 nm. It is uncertain whether such mitochondrial structures are confined to the spermatocyte or whether they may also occur in other cells.  相似文献   

13.
Determination of the sidedness of carbocyanine dye labeling of membranes   总被引:6,自引:0,他引:6  
D E Wolf 《Biochemistry》1985,24(3):582-586
We have found that 2,4,6-trinitrobenzenesulfonate (TNBS) is an effective quencher of the fluorescence of the 1,1'-dialkyl-3,3,3',3'-tetramethylindocarbocyanines (CNdiI's). This quenching appears to occur by complex formation rather than a collisional mechanism. By use of this quenching, we have studied the transbilayer asymmetry of CNdiI labeling for large unilamellar membranes of egg phosphatidylcholine and the plasma membranes of human red blood cells and of ram epididymal spermatozoa. When CNdiI is added to membranes by ethanolic injection, only the outer leaflet labels. We have further shown that in large unilamellar vesicles of egg phosphatidylcholine, the CNdiI's do not appreciably "flip-flop" to the inner leaflet for at least 4 h at temperatures between 4 and 37 degrees C.  相似文献   

14.
Y Zhao  M Kawai 《Biophysical journal》1994,67(4):1655-1668
The effect of temperature on elementary steps of the cross-bridge cycle was investigated with sinusoidal analysis technique in skinned rabbit psoas fibers. We studied the effect of MgATP on exponential process (C) to characterize the MgATP binding step and cross-bridge detachment step at six different temperatures in the range 5-30 degrees C. Similarly, we studied the effect of MgADP on exponential process (C) to characterize the MgADP binding step. We also studied the effect of phosphate (Pi) on exponential process (B) to characterize the force generation step and Pi-release step. From the results of these studies, we deduced the temperature dependence of the kinetic constants of the elementary steps and their thermodynamic properties. We found that the MgADP association constant (K0) and the MgATP association constant (K1) significantly decreased when the temperature was increased from 5 to 20 degrees C, implying that nucleotide binding became weaker at higher temperatures. K0 and K1 did not change much in the 20-30 degree C range. The association constant of Pi to cross-bridges (K5) did not change much with temperature. We found that Q10 for the cross-bridge detachment step (k2) was 2.6, and for its reversal step (k-2) was 3.0. We found that Q10 for the force generation step (Pi-isomerization step, k4) was 6.8, and its reversal step (k-4) was 1.6. The equilibrium constant of the detachment step (K2) was not affected much by temperature, whereas the equilibrium constant of the force generation step (K4) increased significantly with temperature increase. Thus, the force generation step consists of an endothermic reaction. The rate constant of the rate-limiting step (k6) did not change much with temperature, whereas the ATP hydrolysis rate increased significantly with temperature increase. We found that the force generation step accompanies a large entropy increase and a small free energy change; hence, this step is an entropy-driven reaction. These observations are consistent with the hypothesis that the hydrophobic interaction between residues of actin and myosin underlies the mechanism of force generation. We conclude that the force generation step is the most temperature-sensitive step among elementary steps of the cross-bridge cycle, which explains increased isometric tension at high temperatures in rabbit psoas fibers.  相似文献   

15.
The lipid requirement of cytochromec oxidase was reinvestigated using both acetone and phospholipase A to deplete mitochondria of lipid. Removal of lipid resulted in a decrease in both the apparentK m for cytochromec and apparentV max when compared to control mitochondria. Addition of phospholipid to the assay mixture reactivated the enzyme. For both treatments theK m returned to the control value. With phospholipase A treated mitochondria theV max increased to near the control value, while acetone extracted mitochondria could be restored to aV max of 1/2 that of the control. Detergent does not substitute for phospholipid and inhibits the reactivation with phospholipid.This research was supported in part by United States Public Health Service Research Grant AM-14632 and a Grant-in-Aid of the American Heart Association.  相似文献   

16.
The natural compound ferulenol, a sesquiterpene prenylated coumarin derivative, was purified from Ferula vesceritensis and its mitochondrial effects were studied. Ferulenol caused inhibition of oxidative phoshorylation. At low concentrations, ferulenol inhibited ATP synthesis by inhibition of the adenine nucleotide translocase without limitation of mitochondrial respiration. At higher concentrations, ferulenol inhibited oxygen consumption. Ferulenol caused specific inhibition of succinate ubiquinone reductase without altering succinate dehydrogenase activity of the complex II. This inhibition results from a limitation of electron transfers initiated by the reduction of ubiquinone to ubiquinol in the ubiquinone cycle. This original mechanism of action makes ferulenol a useful tool to study the physiological role and the mechanism of electron transfer in the complex II. In addition, these data provide an additional mechanism by which ferulenol may alter cell function and demonstrate that mitochondrial dysfunction is an important determinant in Ferula plant toxicity.  相似文献   

17.
18.
On the sidedness of plasma membrane enzymes   总被引:26,自引:0,他引:26  
  相似文献   

19.
The work reviews membrane processes, such as monooxygenase reaction and oxidative phosphorylation with special reference to hydroxylation of a xenobiotic benzo(a)pyrene and the effects of the radical scavenger propyl gallate and radical generator Fe2+ ions on the reaction kinetics. A possibility is discussed that tocopherol provides for the activity of the lipid-radical cycles involving cytochrome b5. The lipid-radical cycles protect membrane lipids from oxidation and control the kinetics of membrane processes. The NADPH oxidation energy is transformed into the energy of lipid pulsations and this energy is used for activation of membrane enzymes. To account for the role of lipid pulsations in membrane processes, a new parameter is introduced - the internal temperature. It is supposed that there should be the equilibrium between the pro- and antioxidant factors in the membranes, and the presence of exogenous antioxidants (propyl gallate etc.) should be considered as a negative factor.  相似文献   

20.
Summary The kinetic behavior of the adenylyl cyclase activity associated with fat cell membranes purified by centrifugation on sucrose gradients was studied. Under most of the conditions explored, with either Mn++ or Mg++ as the divalent cation in the assay mixtures, the time courses of the reaction were not linear. In the absence of modifiers (i.e., basal activity) or in the presence of insulin, the rate tended to decrease with time; on the other hand, with fluoride or GMP-P(NH)P the curves were concave upwards. To simplify analysis of the results, two kinetic components were defined: an initial component corresponding to the transient rate measured between zero time and 1.5 min of assay and a final component corresponding to the transient rate determined between 3 and 5 min.Over the entire range of Mn++ concentration explored (0.5 to 6.0mm), the basal initial rates were slightly higher than the final ones. With Mg++ in the range between 1.5 and 2.5mm, the final rates were fourfold lower than the initial ones. Higher or lower Mg++ concentrations gave velocity ratios equivalent to those observed with Mn++.Insulin clearly decreased the final rates at Mn++ concentrations up to 2.5mm. With higher concentrations the effects were completely reversed. The effects of insulin on initial rates measured with Mn++, or the initial or final rates measured with Mg++, were less evident.Stimulation of adenylyl cyclase activity by fluoride was most pronounced on the final rates. In addition, this stimulation was higher with Mg++ than with Mn++.Isoproterenol stimulation of adenylyl cyclase was negligible in the presence of Mn++ (0.5 to 6.0mm). With Mg++ (0.5 to 6.0mm), stimulation was more evident on the final rates. *** DIRECT SUPPORT *** A0130063 00002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号