共查询到20条相似文献,搜索用时 15 毫秒
1.
Biguanides inhibit d-glucose uptake in vesicles from small-intestinal brush border membranes. Evidence is presented that this inhibition is due to a reduced concentration of Na+ in the microenvironment of the carrier(s) for d-glucose. Biguanides do not inhibit the uptake of either d-fructose or l-glucose. 相似文献
2.
Dilute solutions of d-fructose and d-glucose undergo alkaline degradation, and, at temperatures in the range of 30–70°, almost two moles of alkali are consumed per mole of the carbohydrate. The degradation is partly guided by the dielectric constant of the medium; such additives as acetone and urea have specific effects where the reactions are not essentially guided by the medium dielectric. Acetone and urea presumably form complexes with the carbohydrates; this is revealed for the former by the formation of a dark red solution having a spectral band at 320 nm, like that observed earlier in the presence of ethylenediamine. 相似文献
3.
Electro-osmosis and streaming-potential measurements were made across a testosterone-plug membrane, using water and aqueous solutions of d-glucose as permeants. The electrophoretic velocity of testosterone particles dispersed in these solutions was also measured, experiments being confined to the range where linear flux-force relationships hold. Phenomenological coefficients were evaluated by using these linear relations, and the results analyzed inthe light of the thermodynamics of irreversible processes. Saxen's relationship holds between electro-osmosis and streaming potential. Concentration dependence of the various phenomenological coefficients was also examined. Cross-phenomenological coefficients were found to decrease with increase in the concentration of d-glucose solutions. The results are explained on the basis of strong hydrogen-bonding between d-glucose and the surrounding water molecules. Such membrane parameters as pore size, average number of pores, and the membrane constant were evaluated. Electro-osmotic and electrophoretic data were used to estimate the zeta potential, in order to characterize the membrane-permeant interface. The dependence of the zeta potential on the concentration was also examined. 相似文献
4.
Mohamed Mathlouthi Claudine Luu Anne Marie Meffroy-Biget Dang Vinh Luu 《Carbohydrate research》1980,81(2):213-223
The solute-solvent interactions of d-fructose, d-glucose, and sucrose in aqueous solution were studied by comparison of characteristic, Raman of the water and the sugar components. Shifts in frequency and intensity were observed in both the bending and the stretching regions of CH2 and H2O. The ratios of integrated, Raman intensities I(CH2)/I(H2O) of the CH2 peak and the H2O bending band, and I(CH)/I(OH) of the C-H stretching line to O-H stretching band were determined. Their evolutions in terms of mass-concentration display discontinuities at specific concentrations for each of the three sugars. These breaks were interpreted as changes in the hydrogen bonding of the various species. 相似文献
5.
The hydrothermolysis of cellobiose in the range 180–249° has been studied. Kinetic analysis of the reaction showed that 60% of the cellobiose is converted into d-glucose, and 40% into other products. The rate (k1) of cellobiose disintegration is approximately eight times that (k2) of d-glucose. Thus, hydrothermolysis differs from acidic hydrolysis. Hydrothermolysis is not dependent on pH, at least in the range 3–7. 相似文献
6.
7.
d-Glucose decreases phosphate reabsorption in rat proximal tubule. It is also postulated that some amino acids interact with phosphate reabsorption. To investigate the mechanism of these interactions, phosphate, d-glucose and l-alanine transport kinetics were measured in brush border membrane vesicles isolated from superficial rat kidney cortex by the calcium precipitation technique. At pH 7.4, Na+-dependent phosphate transport was inhibited in the presence of either d-glucose (39 mM) or l-alanine (2.4 mM). In this model, with d-glucose or with l-alanine the value of the phosphate uptake was decreased, whereas the apparent for the phosphate uptake was not affected. However, some inhibition of phosphate transport was observed in the presence of l-glucose, d-alanine or d-glucose after phlorizin preincubation. A 30% Na+-dependent l-alanine (0.1 mM) transport inhibition was observed in the presence of 5 mM phosphate. d-Glucose (1 mM) was also inhibited by 20% when 5 mM phosphate was added to incubation medium. According to several authors, in our model, d-glucose decreased the l-alanine transport and vice versa. Moreover, when the membrane potential was abolished, a clear inhibition of d-glucose by l-alanine persisted. These multiple interactions could be explained by the accelerated dissipation of the Na+ gradient insofar as the rate of the Na+ uptake was increased with d-glucose, l-alanine or phosphate and since the absence of variations in membrane potential did not suppress these inhibitions. 相似文献
8.
d-Glucose and glycerol precursors randomly labelled with deuterium were prepared and used for the biosynthesis of bacterial cellulose by Acetobacter xylinum. The materials obtained were converted into triacetate derivatives and analysed by 250 MHz nuclear magnetic resonance.Labelling percentages on each position are reported. The weighted addition of combinations of different 2H or 1H sites for mixtures of multiple labelled compounds was performed by means of an N.M.R. spectrum simulation program according to different hypotheses. The nonrandom nature of the results showed the importance of exchange phenomena and of the biosynthetic pathways which take place during cellulose biosynthesis.While showing less favourable properties than 13C enrichment, deuterium labelling can nevertheless lead to significant results (in particular if one is dealing with labelled fragments of precursors incorporated partly or totally into a final molecule), particularly in view of the easy preparation of deuterated compounds by catalytic exchange. 相似文献
9.
In order to study the effect of the antibiotic neomycin on the intestinal epithelium, d-glucose was used as a probe molecule and its transport into rabbit brush border membrane vesicles was measured by a rapid filtration method. Treatment of the epithelium with neomycin sulfate prior to the preparation of the brush border membrane enhanced the d-glucose uptake, whereas neutral N-acetylated neomycin did not. This action of neomycin was related to its polycationic character and not to its bactericidal action. No significant difference could be demonstrated between the protein content or disaccharidase-specific activities of the brush border fractions from treated or non-treated intestines. Electrophoretic protein patterns of SDS-solubilized membrane were not significantly different after neomycin treatment. To gain more information on the mechanism involved in the stimulation of d-glucose transport, experiments were conducted on phosphatidyl glycerol artificial membranes and the results compared with those obtained with brush border membrane. At a concentration of 10?7 M, neomycin decreased the nonactin-induced K+ conductance by a factor of approx. 100. The membrane conductance was linearly dependent on the neomycin concentration and the conductance in 10?2 M KCl was 10 times that in 10?3 M KCl. The valence of neomycin was estimated, from the slope of these curves, to be between 6 and 4. In contrast, acetylated neomycin had no effect on the nonactin-induced K+ membrane conductance. Therefore, the effect of neomycin on artificial membrane is related to its 4 to 6 positive charges. It is proposed that the stimulation of sugar transport in brush border membrane is related to screening of the membrane negative charges by the positively-charged neomycin. Accumulation of anions at the membrane surface then occurs and their diffusion into the intravesicular space would increase the transmembrane potential which, in turn, stimulates the entry of d-glucose. 相似文献
10.
Three-dimensional X-ray diffraction data were used to determine the crystal structure of sodium β-d-glucuronate monohydrate, a model system for investigating the factors involved in the binding of sodium ions to d-glucuronate residues of glycosaminoglycans. Crystals of the salt are monoclinic, space group P21, with a = 9.206(3) Å, b = 7.007(2) Å, c = 7.378(3) Å, β = 96.84(3)°, and Z = 2. Intensity data for 858 reflections were measured with an automated diffractometer. A trial structure, obtained by direct methods, was refined by least squares to R = 0.035. An outstanding feature of the crystal packing is the interaction of d-glucuronate anions with sodium ions. The sodium ion is coordinated to three symmetry-related -glucuronate anions and to one water molecule. The d-glucuronate anion binds sodium cations through the three following sites: one that involves a carboxyl oxygen atom combined with ring oxygen O-5; one that includes a single carboxyl oxygen atom, and one composed of the O-3–O-4 pair of hydroxyl groups. 相似文献
11.
The kinetics of D-xylose transport were studied in Rhodotorula glutinis. Analysis of the saturation isotherm revealed the presence of at least two carriers for d-xylose in the Rhodotorula plasma membrane. These two carriers exhibited Km values differing by more than an order of magnitude. The low Km carrier was repressed in rapidly growing cells and depressed by starvation of the cells.Several hexoses were observed to inhibit d-xylose transport. In the studies reported here, the inhibitions produced by d-galactose and 2-deoxy-d-glucose were examined in some detail in order to define the interactions of these sugars with the d-xylose carriers. 2-Deoxy-d-glucose competitively inhibited both of the d-xylose carriers. In contrast, only the low-Km carrier was competitively inhibited by d-galactose. 相似文献
12.
Landis W. Doner 《Carbohydrate research》1979,70(2):209-216
Several bases have been evaluated as catalysts for the production of d-psicose (d-ribo-2-hexulose) from d-fructose. The hexose levels in the isomerized mixtures were quantified by l.c. on a μBondapak/Carbohydrate column. The most effective and convenient base was found to be pyridine, and mixtures produced by boiling concentrated solutions (1 g/mL) of d-fructose in pyridine under reflux contained 12.4% of psicose, lesser proportions of glucose and mannose, and 25.8% of the starting material. Following removal of solvent, fermentation with bakers' yeast removed most hexoses other than d-psicose, which was isolated by chromatography on cellulose. The entire procedure required three days, and d-psicose was obtained in gram quantities in 6.8% of the theoretical yield. 相似文献
13.
Sorbose and 2-deoxy-d-galactose are taken up in Saccharomyces fragilis by an active transport mechanism, as indicated by the energy requirement of the process and the accumulation of free sugar against the concentration gradient. There are no indications for transport-associated phosphorylation as mechanism of energy coupling with these two sugars.The measured sugar-proton cotransport and the influx inhibition by uncouplers suggest a chemiosmotic coupling mechanism. Thus there are at least two different active transport mechanisms operative in Saccharomyces fragilis: transport-associated phosphorylation in the case of 2-deoxy-d-galactose and chemiosmotic coupling in the case of sorbose and 2-deoxy-d-galactose. The difference between the two mechanisms are discussed.Uncouplers do not stimulate downhill sorbose transport in energy-depleted cells and evoke an almost complete inhibition of efflux and of exchange transport.The differences between this sugar-proton cotransport system and similar systems in bacteria and Chlorella are discussed. 相似文献
14.
2-Deoxy-d-glucose transport and metabolism was studied in Saccharomyces fragilis. Inside the cells four phosphorylated and three non-phosphorylated derivatives were found and identified. Accumulation of phosphorylated 2-deoxyglucose derivatives was balanced by a concomitant decrease of cellular ATP, orthophosphate and polyphosphates.The free sugar was concentrated against a concentration gradient, contradicting facilitated diffusion. Pulse labeling experiments revealed transport-associated phosphorylation.Theoretical considerations and analysis of the effects of iodoacetate showed that an intracellular hexokinase activity was not involved in 2-deoxyglucose phosphorylation, although this sugar is a good substrate for the enzyme in in vitro experiments. 相似文献
15.
Mathias Ibert Patrick Fuertès Nabyl Merbouh Christian Feasson Francis Marsais 《Carbohydrate research》2011,346(4):512
During the course of the 2,2,6,6-tetramethyl-1-piperidinyloxy free radical-catalyzed electrochemical oxidation of d-glucose to d-glucaric acid a new side-product was observed. This compound was isolated and identified as a tricarboxylic acid of unique structure, which was named maribersonic acid. Its structure was proven by different experiments coupled with several analytical methods, and its appearance during the electrochemical oxidation of d-glucose was rationalized through a thorough study. 相似文献
16.
M. Palumbo A. Cosani M. Terbojevich E. Peggion 《International journal of biological macromolecules》1981,3(2):91-96
Poly(d-phenylglycine) and poly(d-cyclohexylglycine) containing phenyl and cyclohexyl rings bound to the α-carbon of the polypeptide chain, have been synthesized. Circular dichroism measurements show that both polymers undergo a conformational transition from the random-coil form to an ordered form, upon addition of water, ethanol or trifluoroethanol to sulphuric acid solutions. Solid state measurements indicate that the ordered structures of poly(d-phenylglycine) and poly(d-cyclohexylglycine) are of the β-type. While for the former the antiparallel arrangement is predominant, for the latter there seems to be a greater tendency towards the parallel form. The ordered form of poly(d-cyclohexylglycine) is slightly more stable than the corresponding form of poly(d-phenylglycine) in all the above solvent systems. This can be interpreted in terms of stronger non covalent bond formation in the former polypeptide. Our results have been compared with literature on poly(l-phenylalanine) and poly(l-cyclohexylalanine). 相似文献
17.
It has previously been shown that mercurials acting from the cytoplasmic side or from within the hydrophobic part of the membrane inactivate the small intestinal Na+/d-glucose cotransporter by blocking essential SH-groups (Klip, A., Grinstein, S. and Semenza, G. (1979) Biochim. Biophys. Acta 558, 233–245). Another (set of) sulfhydryl(s) which are critical for phlorizin binding and sugar transport function and which may lie on the luminal side of the brush border membrane, can be blocked by DTNB and 4,4′-dithiopyridine but not by . In addition, modification of amino groups by fluorescamine, reductive methylation and (under certain conditions) DIDS also lead to inactivation of the carrier's binding and transport functions. No evidence was obtained that any of the above groups is directly involved in the binding of either Na+/d-glucose or phlorizin, since none of these compounds prevented inactivation of the cotransporter. 相似文献
18.
Thomas A. Krenitsky George W. Koszalka Joel V. Tuttle Janet L. Rideout Gertrude B. Elion 《Carbohydrate research》1981,97(1):139-146
A method is described for the synthesis of purine d-arabinonucleosides that uses purine bases and 2,2′-anhydro-(1-β-d-arabinofuranosylcytosine), AraC-an, as the starting materials. AraC-an was chosen as the precursor to the d-arabinosyl donor, because it is more readily available than any of the products that may be sequentially derived from it, namely, 1-β-d-arabinofuranosylcytosine (AraC), 1-β-d-arabinofuranosyluracil (AraU), and α-d-arabinofuranosyl-1-phosphate (Araf 1-P), a d-arabinofuranosyl donor. Four reactions were involved in the overall process; (a) AraC-an was nonenzymically hydrolyzed at alkaline pH to AraC which was then (b) deaminated by cytidine deaminase to AraU, a nucleoside, (c) phosphorylyzed by uridine phosphorylase to Araf 1-P, and (d) this ester caused to react with a purine base to afford a purine d-arabinonucleoside, the reaction being catalyzed by purine nucleoside phosphorylase. All four reactions occurred in situ, the first and second being performed sequentially, whereas the third and fourth were combined in a single step. The three enzyme catalysts were purified from Escherichia coli. The efficiency of the method is exemplified by the synthesis of the d-arabinonucleosides of 2,6-diaminopurine and adenine; the overall yields, based on AraC-an, were 60 and 80%, respectively. 相似文献
19.
Syntheses are reported of 4-deoxy-d-xylo-hexose and 4-azido-4-deoxy-d-glucose as potential inhibitors for lactose synthase [uridine 5′-(α-d-galactopyranosyl pyrophosphate):d-glucose 4-β-d-galactopyranosyltransferase, EC 2.4.1.22]. These syntheses involved SN2 displacement of the 4-methylsulfonyloxy group of methyl 2,3,6-tri-O-benzoyl-4-O-methylsulfonyl-α-d-galactopyranoside by iodide and azide ions. In both cases, inversion in configuration was observed. The resulting intermediates, methyl 2,3,6-tri-O-benzoyl-deoxy-4-iodo-α-d-glucopyranoside and methyl 4-azido-2,3,6-tri-O-benzoyl-deoxy-α-d-glucopyranoside, were obtained in crystalline form. Both 4-deoxy-d-xylo-hexose and 4-azido-4-deoxy-d-glucose were found to be inhibitors for lactose synthase in the presence of α-lactalbumin, but had no effect in the absence of α-lactalbumin. Both d-glucose analogues bind to the enzyme system far more weakly than d-glucose, suggesting that the recognition of the 4-OH group of the acceptor substrate is an important factor in binding. 相似文献
20.
Carol L. Stahl Gary A. Sojka 《Biochimica et Biophysica Acta (BBA)/General Subjects》1973,297(2):241-245
d-malate replaced l-malate in supporting both photosynthetic (anaerobic, light) and heterotrophic (aerobic, dark) growth of Rhodopseudomonas capsulata. Growth rates and cell yields were nearly equivalent with both enantiomorphs. Addition of glucose to malate culture media increased the growth rate and doubled the cell yield of heterotrophic cultures, but had little effect on photosynthetic cultures. Aerobically-grown cells showed a higher level of substrate-dependent oxygen uptake with l-malate than with d-malate. This preference for l-malate occured even in cells grown on d-malate. No malic racemase activity was detected in extracts of heterotrophically- or photosynthetically-grown cells. 相似文献