首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of cholesterol sulfate (CS) and calcium on the phase behavior of lipid mixtures mimicking the stratum corneum (SC) lipids was examined using vibrational spectroscopy. Raman microspectrocopy showed that equimolar mixtures of ceramide, palmitic acid, and cholesterol underwent a phase transition in which, at low temperatures, lipids formed mainly a mosaic of microcrystalline phase-separated domains, and above 45 degrees C, a more fluid and disordered phase in which the three lipid species were more miscible. In the presence of Ca(2+), there was the formation of fatty acid-Ca(2+) complexes that led to domains stable on heating. Consequently, these lipid mixtures remained heterogeneous, and the fatty acid molecules were not extensively involved in the formation of the fluid lipid phase, which included mainly ceramide and cholesterol. However, the presence of CS displaced the association site of Ca(2+) ions and inhibited the formation of domains formed by the fatty acid molecules complexed with Ca(2+) ions. This work reveals that CS and Ca(2+) modulate the lipid mixing properties and the lipid order in SC lipid models. The balance in the equilibria involving Ca(2+), CS, and fatty acids is proposed to have an impact on the organization and the function of the epidermis.  相似文献   

2.
The lipid lamellae present in the outermost layer of the skin, the stratum corneum (SC), form the main barrier for diffusion of molecules across the skin. The main lipid classes in SC are cholesterol (CHOL), free fatty acids (FFA) and at least nine classes of ceramides (CER), referred to as CER1 to CER9. In the present study the phase behaviour of four synthetic CER, either single or mixed with CHOL or CHOL and FFA, has been studied using small and wide angle X-ray diffraction. The lipid mixtures showed complex phase behaviour with coexistence of several phases. The results further revealed that the presence of synthetic CER1 as well as a proper composition of the other CER in the mixture were crucial for the formation of a phase with a long periodicity, characteristic for SC lipid phase behaviour. Only a mixture containing synthetic CER1 and CER3, CHOL and FFA showed similar phase behaviour to that of SC.  相似文献   

3.
The phase behavior of the main classes of polar lipids found in the photosynthetic membranes of higher plants and algae is reviewed and compared to that of binary lipid mixtures and total lipid extracts of such membranes. Particular interest is paid to the way in which factors such as temperature and acyl chain saturation influence the phase behavior of these lipids and the implications this has in terms of the ability of photosynthetic membranes to resist environmental stress.  相似文献   

4.
Lipid lamellae present in the outermost layer of the skin, the stratum corneum, form the main barrier for the diffusion of molecules through the skin. The presence of a unique 13 nm lamellar phase and its high crystallinity are characteristic for the stratum corneum lipid phase behavior. In the present study, small-angle and wide-angle X-ray diffraction were used to examine the organization in lipid mixtures prepared with a unique set of well-defined synthetic ceramides, varying from each other in head group architecture and acyl chain length. The results show that equimolar mixtures of cholesterol, free fatty acids, and synthetic ceramides (resembling the composition of pig ceramides) closely resemble the lamellar and lateral stratum corneum lipid organization, both at room and higher temperatures. Exclusion of several ceramide classes from the mixture does not affect the lipid organization. However, complete substitution of ceramide 1 (acylceramide with a sphingosine base) with ceramide 9 (acylceramide with a phytosphingosine base) reduces the formation of the long periodicity lamellar phase. This indicates that the head group architecture of acylceramides affects the lipid organization. In conclusion, lipid mixtures prepared with well-defined synthetic ceramides offer an attractive tool with which to unravel the importance of the molecular structure of individual ceramides for proper lipid organization.  相似文献   

5.
The ability of calcium to induce phase separation in multicomponent lipid mixtures containing various unsaturated species of acidic and neutral phospholipids has been investigated by 31P NMR, 3H NMR, and small-angle X-ray diffraction techniques. It is shown that, in unsaturated (dioleoyl-) phosphatidylglycerol (PG)/phosphatidylethanolamine (PE) (1:1) and phosphatidic acid (PA)/phosphatidylcholine (PC) (1:1) mixtures, calcium is unable to induce lateral phase separation of the acidic and neutral lipids and that all the lipids adopt a hexagonal (HII) phase in the presence of calcium. In multicomponent mixtures containing one or more acidic species the presence of cholesterol either facilitates calcium-induced lamellar to hexagonal (HII) transitions for all the lipid components or, in systems already in a hexagonal (HII) phase, mitigates against calcium-induced lateral phase separations. Further, cholesterol is shown to exhibit no preferential interaction on the NMR time scale with either PC, PE, or phosphatidylserine (PS) when the lipids are in the liquid-crystal state. The ability of cholesterol to directly induce HII phase formation in PC/PE mixtures is also shown to be common to various other sterols including ergosterol, stigmasterol, coprostanol, epicoprostanol, and androstanol.  相似文献   

6.
Synthetic dipalmitoyl phosphatidylserine exhibits a sharp chain-melting transition temperature at 51 degrees C as judged by partitioning of the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl. Phase diagrams representing lateral phase separations in binary mixtures of dipalmitoyl phosphatidylserine with dipalmitoyl phosphatidylcholine as well as with dimyristoyl phosphatidylcholine are derived from paramagnetic resonance determinations of 2,2,6,6,-tetramethylpiperidine-1-oxyl partitioning, freeze-fracture electron microscopic studies and theoretical arguments that limit the general form of acceptable phase diagrams. The reported phase diagrams are the first to describe binary mixtures in which one lipid is charged and the second lipid uncharged. These phase diagrams also are the first to include the problem of solid phases with different crystalline conformations as it relates to the occurrence of a pretransition in phosphatidylcholines and its absence in phosphatidylserines. In addition to the phase diagrams reported here for these two binary mixtures, a brief theoretical discussion is given of other possible phase diagrams that may be appropriate to other lipid mixtures with particular consideration given to the problem of crystalline phases of different structures and the possible occurrence of second-order phase transitions in these mixtures.  相似文献   

7.
Bipolar lipids from the membranes of archaebacterium Caldariella acidophila can form small unilamellar liposomes, when sonicated from lipid mixtures containing at least 25 mol% egg phosphatidylcholine. With increasing contents of archaebacterial lipid the inner radius of highly sonicated vesicles increases (from approx. 90 Å to approx. 160 Å) concomitant with an enhanced asymmetric distribution of the phosphatidylcholine molecules towards the outer face of the lipid bilayer membranes.  相似文献   

8.
Using giant unilamellar vesicles (GUVs) made from POPC, DPPC, cholesterol and a small amount of a porphyrin-based photosensitizer that we name PE-porph, we investigated the response of the lipid bilayer under visible light, focusing in the formation of domains during the lipid oxidation induced by singlet oxygen. This reactive species is generated by light excitation of PE-porf in the vicinity of the membrane, and thus promotes formation of hydroperoxides when unsaturated lipids and cholesterol are present. Using optical microscopy we determined the lipid compositions under which GUVs initially in the homogeneous phase displayed Lo-Ld phase separation following irradiation. Such an effect is attributed to the in situ formation of both hydroperoxized POPC and cholesterol. The boundary line separating homogeneous Lo phase and phase coexistence regions in the phase diagram is displaced vertically towards the higher cholesterol content in respect to ternary diagram of POPC:DPPC:cholesterol mixtures in the absence of oxidized species. Phase separated domains emerge from sub-micrometer initial sizes to evolve over hours into large Lo-Ld domains completely separated in the lipid membrane. This study provides not only a new tool to explore the kinetics of domain formation in mixtures of lipid membranes, but may also have implications in biological signaling of redox misbalance.  相似文献   

9.
The phase behavior of membrane lipids is known to influence the organization and function of many integral proteins. Giant unilamellar vesicles (GUVs) provide a very useful model system in which to examine the details of lipid phase separation using fluorescence imaging. The visualization of domains in GUVs of binary and ternary lipid mixtures requires fluorescent probes with partitioning preference for one of the phases present. To avoid possible pitfalls when interpreting the phase behavior of these lipid mixtures, sufficiently thorough characterization of the fluorescent probes used in these studies is needed. It is now evident that fluorescent probes display different partitioning preferences between lipid phases, depending on the specific lipid host system. Here, we demonstrate the benefit of using a panel of fluorescent probes and confocal fluorescence microscopy to examine phase separation in GUVs of binary mixtures of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Patch and fibril gel phase domains were found to co-exist with liquid disordered (l(d)) domains on the surface of GUVs composed of 40:60 mol% DOPC/DPPC, over a wide range of temperatures (14-25°C). The fluorescent lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl (NBD-DPPE), proved to be the most effective probe for visualization of fibril domains. In the presence of Lissamine(TM) rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (Rh-DPPE) we were unable to detect fibril domains. This fluorophore also affected the partitioning behavior of other fluorescent probes. Overall, we show that the selection of different fluorescent probes as lipid phase reporters can result in very different interpretation of the phase behavior of DOPC/DPPC mixtures.  相似文献   

10.
Interactions of proteins and cholesterol with lipids in bilayer membranes.   总被引:6,自引:0,他引:6  
Mixtures of lipids and protein, the ATPase from rabbit sarcoplasmic reticulum, were studied by freeze-fracture electron microscopy and by measurement of the amount of fluid lipid with the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl (TEM-PO). In dimyristoyl phosphatidylcholine vesicles the protein molecules were randomly distributed above the transition temperature, Tt, of the lipid and aggregated below Tt. For mixtures of dimyristoyl and dipalmitoyl phosphatidylcholine the existence of fluid and solid domains were shown in the temperature interval predicted from earlier TEMPO measurements. When protein was incorporated into this lipid mixture, freeze-fracture particles were randomly distributed in fluid lipids, or aggregated when only solid lipids were present. In mixtures of dimyristoyl phosphatidylcholine with cholesterol the protein was distributed randomly above the transition temperature of the phosphatidylcholine. Below that transition temperature the protein was excluded from a banded phase of solid lipid in the case of 10 mol% cholesterol. In mixtures containing 20 mol% cholesterol, protein molecules formed linear arrays, 50-200 nm in length, around smooth patches of lipid. Phase diagrams for lipid/cholesterol and lipid/protein systems are proposed which account for many of the available data. A model for increasing solidification of lipid around protein molecules or cholesterol above the transition temperature of the lipid is discussed.  相似文献   

11.
We have probed the character of the observed phase separation in mixtures of phosphatidylcholines (PC) and/or phosphatidylethanolamines (PE) in the presence of CaCl2 solutions. Egg yolk phosphatidylethanolamine (EYPE) and a 1:1 molar ratio of dioleoylphosphatidylcholine/dioleoylphosphatidylethanolamine (DOPC/DOPE) were observed to undergo phase separation in CaCl2 solutions, as was previously observed for egg yolk phosphatidylcholine (EYPC) (L.J. Lis et al. Biochemistry, 20 (1981) 1771-1777). However, the mixed chain lipid, palmitoyloleoyl-PC, yielded only a single phase in water or CaCl2 solution. We hypothesize that two lipid species are necessary for the observed phase separation to occur, but that the separation itself is not a function of the individual lipid species, but of the mixture.  相似文献   

12.
The effect of concanavalin A (Con A) on the thermotropic behavior of positively charged, glycosyl-free lipids and their mixtures with zwitterionic lipids was investigated by differential scanning calorimetry. The gel to liquid-crystal phase transition enthalpy of pure dipalmitoylcholine (DPC) was found to be significantly increased in the presence of Con A (delta H = 31.2 and 42.5 KJ mol-1 lipid in the presence and in absence of Con A, respectively). Addition of the lectin to DPC liposomes, furthermore, induces the appearance of a new phase transition centered at 320 K. These results are interpretable by a partial hydrophobic interdigitation of the lectin molecule into the liposomal bilayer. The effect of Con A on the phase behavior of three 2:1 mixtures of zwitterionic and of positively charged lipids was also investigated. Phase diagrams of the systems dipalmitoyl-phosphatidylcholine-dihydrosphingosine (DPPC-DHS), sphingomyelin-dipalmitoylcholine (SPM-DPC), and dimyristoylphosphatidylcholine-dipalmitoylcholine (DMPC-DPC) are presented. In lipid mixtures of limited miscibility (DPPC-DHS and SPM-DPC), Con A induces pronounced phase-separation effects. These effects are attributable to a direct hydrophobic interaction of the lectin with the liposomal bilayer and do not require the presence of specific receptor groups. The possible relationship between lectin-induced phase separations in the lipid matrix of biomembranes, and the observed changes in membrane permeability, membranal enzymatic activities, etc., is briefly discussed.  相似文献   

13.
The effect of temperature on the lateral structure of lipid bilayers composed of porcine brain ceramide and 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC), with and without addition of cholesterol, were studied using differential scanning calorimetry, Fourier transformed infrared spectroscopy, atomic force microscopy, and confocal/two-photon excitation fluorescence microscopy (which included LAURDAN generalized polarization function images). A broad gel/fluid phase coexistence temperature regime, characterized by the presence of micrometer-sized gel-phase domains with stripe and flowerlike shapes, was observed for different POPC/ceramide mixtures (up to approximately 25 mol % ceramide). This observed phase coexistence scenario is in contrast to that reported previously for this mixture, where absence of gel/fluid phase coexistence was claimed using bulk LAURDAN generalized polarization (GP) measurements. We demonstrate that this apparent discrepancy (based on the direct comparison between the LAURDAN GP data obtained in the microscope and the fluorometer) disappears when the additive property of the LAURDAN GP function is taken into account to examine the data obtained using bulk fluorescence measurements. Addition of cholesterol to the POPC/ceramide mixtures shows a gradual transition from a gel/fluid to gel/liquid-ordered phase coexistence scenario as indicated by the different experimental techniques used in our experiments. This last result suggests the absence of fluid-ordered/fluid-disordered phase coexistence in the ternary mixtures studied in contrast to that observed at similar molar concentrations with other ceramide-base-containing lipid mixtures (such as POPC/sphingomyelin/cholesterol, which is used as a canonical raft model membrane). Additionally, we observe a critical cholesterol concentration in the ternary mixtures that generates a peculiar lateral pattern characterized by the observation of three distinct regions in the membrane.  相似文献   

14.
Mixtures of lipids and proteins, the ATPase from rabbit sarcoplasmic reticulum, were studied by freeze-fracture electron microscopy and by measurement of the amount of fluid lipid with the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). In dimyristoyl phosphatidylcholine vesicles the protein molecules were randomly distributed above the transition temperature, Tt, of the lipid and aggregated below Tt. For mixtures af dimyristoyl and dipalmitoyl phosphatidylcholine the existence of fluid and solid domains was shown in the temperature interval predicted from earlier TEMPO measurements. When protein was incorporated into this lipid mixture, freeze-fracture particles were randomly distributed in fluid lipids, or aggregated when only solid lipids were present.In mixtures of dimyristoyl phosphatidylcholine with cholesterol the protein was distributed randomly above the transition temperature of the phosphatidylcholine. Below that transition temperature the protein was excluded from a banded phase of solid lipid in the case of 10 mol% cholesterol. In mixtures containing 20 mol% cholesterol, protein molecules formed linear arrays, 50–200 nm in length, around smooth patches of lipid.Phase diagrams for lipid/cholesterol and lipid/protein systems are proposed which account for many of the available data. A model for increasing solidification of lipid around protein molecules or cholesterol above the transition temperarture of the lipid is discussed.  相似文献   

15.
The thermotropic properties of the bipolar lipids, glycerol dialkylglycerol tetraether (GDGT) and glycerol dialkylnonitol tetraether (GDNT), were determined at different degrees of hydration and in mixtures with dipalmitoylphosphatidylcholine (DPPC). The number of water molecules rendered unfreezable by the GDNT molecule is 10+/-1.5 and that by the GDGT molecule 2.8+/-0.7 or about 1.1-1.5 H2O molecules per OH group. Binding of water molecules causes randomization of the two polar heads from the oriented form prevailing in the dry state. The hydration seems to be a cooperative process extending over a whole lipid domain. DPPC added in small amounts to GDNT interacts preferentially with the nonitol halves of the molecules separating them from the glycerol half molecules. In the cooperative interaction domain each DPPC molecule is surrounded by up to six GDNT molecules. Cooperative domains formed during the interaction of DPPC with GDGT are less pronounced. In both cases they affect the thermotropic properties of the system.  相似文献   

16.
Phase diagrams of lipid mixtures can show several different regions of phase coexistence, which include liquid-disordered, liquid-ordered, and gel phases. Some phase regions are small, and some have sharp boundaries. The identity of the phases, their location in composition space, and the nature of the transitions between the phases are important for understanding the behavior of lipid mixtures. High fidelity phase boundary detection requires high compositional resolution, on the order of 2% compositional increments. Sample artifacts, especially the precipitation of crystals of anhydrous cholesterol, can occur at higher cholesterol concentrations unless precautions are taken. Fluorescence resonance energy transfer (FRET) can be used quantitatively to find the phase boundaries and even partition coefficients of the dyes between coexisting phases, but only if data are properly corrected for non-FRET contributions. Self-quenching of the dye fluorescence can be significant, distorting the data at dye concentrations that intuitively might be considered acceptable. Even more simple than FRET experiments, measurements of single-dye fluorescence can be used to find phase boundaries. Both FRET and single-dye fluorescence readily detect the formation of phase domains that are much smaller than the wavelength of light, i.e. "nanoscopic" domains.  相似文献   

17.
Ethylphosphatidylcholines are positively charged membrane lipid derivatives, which effectively transfect DNA into cells and are metabolized by the cells. For this reason, they are promising nonviral transfection agents. With the aim of revealing the kinds of lipid phases that may arise when lipoplexes interact with cellular lipids during DNA transfection, temperature-composition phase diagrams of mixtures of the O-ethyldipalmitoylphosphatidylcholine with representatives of the major lipid classes (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, cholesterol) were constructed. Phase boundaries were determined using differential scanning calorimetry and synchrotron x-ray diffraction. The effects of ionic strength and of DNA presence were examined. A large variety of polymorphic and mesomorphic structures were observed. Surprisingly, marked enhancement of the affinity for nonlamellar phases was observed in mixtures with phosphatidylethanolamine and cholesterol as well as with phosphatidylglycerol (previously reported). Because of the potential relevance to transfection, it is noteworthy that such phases form at close to physiological conditions, and in the presence of DNA. All four mixtures exhibit a tendency to molecular clustering in the gel phase, presumably due to the specific interdigitated molecular arrangement of the O-ethyldipalmitoylphosphatidylcholine gel bilayers. It is evident that a remarkably broad array of lipid phases could arise in transfected cells and that these could have significant effects on transfection efficiency. The data may be particularly useful for selecting possible "helper" lipids in the lipoplex formulations, and in searches for correlations between lipoplex structure and transfection activity.  相似文献   

18.
Lipid bilayers provide a solute-proof barrier that is widely used in living systems. It has long been recognized that the structural changes of lipids during the phase transition from bilayer to non-bilayer have striking similarities with those accompanying membrane fusion processes. In spite of this resemblance, the numerous quantitative studies on pure lipid bilayers are difficult to apply to real membranes. One reason is that in living matter, instead of pure lipids, lipid mixtures are involved and there is currently no model that establishes the connection between pure lipids and lipid mixtures. Here, we make this connection by showing how to obtain (i) the short-range repulsion between bilayers made of lipid mixtures and, (ii) the pressure at which transition from bilayer phase to non-bilayer phases occur. We validated our models by fitting the experimental data of several lipid mixtures to the theoretical data calculated based on our model. These results provide a useful tool to quantitatively predict the behavior of complex membranes at low hydration.  相似文献   

19.
An analytical solution is presented for the rate of energy transfer in unilamellar vesicles formed by binary mixtures of phospholipids showing lateral phase separation. The analytical approach developed here is mainly based on geometrical considerations and therefore, is formally different for lateral phase separation phenomena taking place in the gel and in the liquid crystalline states of the lipid system. The rate of energy transfer among donor and acceptor molecules attached to chemically different phospholipids is mathematically correlated to the average cluster size of the less-rich component of the binary mixture, thus allowing its calculation from experimental measurements. Moreover, the equations derived here permit the calculation of the average cluster size as a function of the concentration of each lipid component within certain ranges, and this can be used to improve our knowledge of the thermodynamics of these processes.  相似文献   

20.
The mechanisms that mediate biomembrane shape transformations are of considerable interest in cell biology. Recent in vitro experiments show that the chemical transformation of minor membrane lipids can induce dramatic shape changes in biomembranes. Specifically, it was observed that the addition of DOPA to DOPE has no effect on the stability of the bilayer structure of the membrane. In contrast, the addition of LPA to DOPE stabilizes the bilayer phase of DOPE, increasing the temperature of a phase transition from the bilayer to the inverted hexagonal phase. This result suggests that the chemical conversion of DOPA to LPA is sufficient for triggering a dramatic change in the shape of biomembranes. The LPA/DOPA/DOPE mixture of lipids provides a simple model system for understanding the molecular events driving the shape change. In this work, we used coarse-grained molecular dynamics simulations to study the phase transitions of this lipid mixture. We show that despite the simplicity of the coarse-grained model, it reproduces the experimentally observed phase changes of: 1), pure LPA and DOPA with respect to changes in the concentration of cations; and 2), LPA/DOPE and DOPA/DOPE mixtures with respect to temperature. The good agreement between the model and experiments suggests that the computationally inexpensive coarse-grained approach can be used to infer macroscopic membrane properties. Furthermore, analysis of the shape of the lipid molecules demonstrates that the phase behavior of single-lipid systems is consistent with molecular packing theory. However, the phase stability of mixed lipid systems exhibits significant deviations from this theory, which suggests that the elastic energy of the lipids, neglected in the packing theory, plays an important role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号