首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyranine is shown to be a convenient and sensitive probe for reporting pH values, pHi, at the interior of anionic and at the outer surface of cationic liposomes. It is well shielded from the phospholipid headgroups by water molecules in the interior of anionic liposomes, but it is bound to the surface of cationic liposomes. Hydrogen ion concentrations outside the liposomes, 'bulk pH values', pHo, were measured by a combination electrode. While pHi = pHo for neutral, pHi less than pHo for anionic and pHi greater than pHo for cationic liposomes prepared in 5.0 . 10(-3) M phosphate buffers. pKa values for the ionization of pyranine were 7.22 +/- 0.04 and 6.00 +/- 0.05 in water and at the external surface of cationic liposomes. The surface potential for cationic liposomes containing dipalmitoyl-DL-alpha-phosphatidylcholine, cholesterol and octadecylamine in the molar ratio of 1.00 : 0.634 : 1.01, were calcuated to be +72.2 mV. Proton permeabilities were measured for single and multicompartment anionic liposomes. Transfer of anionic liposomes prepared at a given pH to a solution of different pH resulted in a pH gradient if sodium phosphate or borate were used as buffers. In the presence of sodium acetate proton equilibration is promptly established.  相似文献   

2.
N R Clement  J M Gould 《Biochemistry》1981,20(6):1534-1538
The fluorescence intensity (at 510 nm) of the hydrophilic pyrene analogue 8-hydroxy-1,3,6-pyrenetrisulfonate (pyranine) is strongly dependent upon the degree of ionization of the 8-hydroxyl group (pKa = 7.2) and hence upon the medium pH, over the range pH 6--10. Because of its polyanionic character, pyranine does not bind significantly to phospholipid vesicles having a net anionic surface charge. As a result, it is possible to form vesicles in the presence of pyranine which, after removal of external probe by gel filtration, contain pyranine entrapped within the internal aqueous compartment. Once entrapped, pyranine does not readily leak out of the vesicles. Because the fluorescence properties of entrapped pyranine resemble closely the properties of bulk pyranine solution with respect to pH sensitivity, pyranine can be used as a reliable reporter of aqueous pH changes within anionic vesicles. When HCl is rapidly added to a suspension of unilamellar soybean phospholipid (asolectin) vesicles preincubated at alkaline pH, a biphasic decrease in the pH of the vesicle inner aqueous compartment is observed. An initial, very rapid and electrically uncompensated H+ influx (t 1/2 less than 1 s) results in the generation of a transmembrane electric potential opposing further H+ influx. This leads to the development of a much slower (t 1/2 approximately equal to 5 min), valinomycin-sensitive, proton--counterion exchange which continues until the proton concentration gradient is eliminated. Similar results were obtained in asolectin vesicles prepared by detergent dilution, in sonicated egg phosphatidylcholine vesicles, and in multilamellar asolectin liposomes. The rather high permeability of soybean lipid membranes to H+ is surprising in view of the widespread use of these lipids for the reconstitution of membrane proteins which are thought to generate or utilize H+ ion gradients in energy transduction reactions.  相似文献   

3.
Liposome, although intensively researched as vaccine or drug delivery vehicle, has been of limited use due to the low and unpredictable long-term stability. In order to overcome such problems, polymerized liposome (PL) that could initiate polymerization under very mild reaction condition was examined and compared to a conventional liposome. The polymerizable lipid, 1,2-bis[12-(lipoyloxy)dodecanoyl]-sn-glycero-3-phosphorylcholine (DLL), was synthesized according to the literature, and 1,2-distearoyl-sn-glycero-3-phosphorylcholine (DSPC) was used as the conventional lipid counterpart. Polymerization of liposome was as easy and convenient as just shaking in pH 7.4 buffer. The protein encapsulation efficiency of DLL was higher than that of DSPC, and its protein release rate was lower. Immunoglobulin G (IgG) activity examined after intraperitoneal injection of antigen encapsulated by either DLL or DSPC showed that ca. 2 times as much antibody was formed by DLL-encapsulated lysozyme compared with DSPC-encapsulated form. The reasons for the superior adjuvantic properties of DLL and its future application as a drug delivery system are briefly discussed.  相似文献   

4.
When phospholipid vesicles are added to an aqueous solution of 1,6-diphenyl-1,3,5-hexatriene (DPH) a fluorescence enhancement of up to several hundredfold is observed which can be used for a determination of phospholipid concentration. Fluorescence enhancement of 2 μm DPH is proportional to the phospholipid concentration over a wide range. As little as 0.7 nmol (~0.5 μg of phospholipid) can be determined to within ±10%. The fluorescence is a function of the type of phospholipid used, salt concentration, and time of incubation. Protein and detergents also enhance DPH fluorescence but to a much smaller extent. Optimal conditions for the assay are presented. Use of this assay to detect phospholipid vesicles fractionated by size on a Sepharose 4B column is illustrated. In this case the method compares favorably to more classical methods of analysis in terms of sensitivity, accuracy, and time involved.  相似文献   

5.
The influence of a transmembrane pH gradient on the Ca(2+)-induced fusion of phospholipid vesicles, containing free fatty acids, has been investigated. Large unilamellar vesicles composed of an equimolar mixture of cardiolipin, dioleoylphosphatidylcholine, and cholesterol, containing 20 mol % oleic acid, were employed. Fusion was measured using a kinetic assay for lipid mixing, based on fluorescence resonance energy transfer. At pH 7.5, but not at pH 6.0, in the absence of a pH gradient, oleic acid stimulates the fusion of the vesicles by shifting the Ca2+ threshold concentration required for aggregation and fusion of the vesicles from about 13 mM to 10 mM. In the presence of a pH gradient (at an external pH of 7.5 and a vesicle interior pH of 10.5), the vesicles exhibit fusion characteristics similar to vesicles that do not contain oleic acid at all, consistent with an effective sequestration of the fatty acid to the inner monolayer of the vesicle bilayer induced by the imposed pH gradient. The kinetics of the fusion process upon simultaneous generation of the pH gradient across the vesicle bilayer and initiation of the fusion reaction show that the inward movement of oleic acid in response to the pH gradient is extremely fast, occurring well within 1 s. Conversely, dissipation of an imposed pH gradient, by addition of a proton ionophore during the course of the fusion process, results in a rapid enhancement of the rate of fusion due to reequilibration of the oleic acid between the two bilayers leaflets.  相似文献   

6.
Human apohemoglobin in acidic media was found to induce fusion of phosphatidylcholine/phosphatidylserine (1:1) vesicles at low protein concentration but to fragment the same vesicles to form micellar complex at high protein concentration. The fusion was demonstrated by size increase, vesicle content mixing, lipid mixing, and electron microscopy. The micellization of phospholipid vesicles was observed by light scattering, gel filtration, and electron microscopy. The hydrophobic labeling of the apohemoglobin/vesicle complex followed by CNBr cleavage of apohemoglobin showed that an N-terminal segment of the beta subunit with a molecular weight of approximately 6,000 seems to be mainly involved in the fusion process, but the whole sequences of both alpha and beta chains participate in the micellization process.  相似文献   

7.
A sensitive method for the nonisotopic in vitro labeling of proteins under physiological conditions using photobiotin, a compound originally developed for labeling nucleic acids (Forster et al. (1985) Nucleic Acids Res. 13, 745), has been developed. Using sheep brain tubulin as a model protein it was shown that labeling with photobiotin resulted in detection limits below 10 pg when avidin-alkaline phosphatase was used in the final step. No significant loss of tubulin polymerization, colchicine binding, recognition by antitubulin antibodies, or changes in electrophoretic behavior were observed. In addition, photobiotinylation of antitubulin antibodies did not affect their recognition of unlabeled tubulin. The use of photobiotin labeling with avidin-alkaline phosphatase detection for electrophoretic separations of molecular weight standards, crude protein supernatants, and tubulin gave a 64 to 1024-fold increase in sensitivity over Coomassie blue staining.  相似文献   

8.
9.
A protein conferring passive chloride permeability was isolated from a N-octylglucoside solubilized extract of partially purified H(+)-transporting osteoclast cell membranes. Purification was achieved by binding of solubilized protein to an amine-linked 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) Sepharose 4B column and elution with 50 mM KCl. A major protein, with MR = 60 kD on 10% SDS-PAGE, was obtained, which was further purified to homogeneity by HPLC gel filtration. This protein introduced 36Cl- permeability when reconstituted in phospholipid membranes by equilibrium dialysis. The Cl- transport recovered in reconstituted membranes retained sensitivity to DIDS confirming the identity of the isolated protein as a stilbene-sensitive chloride channel.  相似文献   

10.
The binding of dextran sulfate to phospholipid liposomes was investigated by microelectrophoresis experiments. The polyanion binds to neutral phospholipid liposomes (DMPC and PE) only in the presence of Ca2+. If positively charged stearylamine is incorporated in the vesicles dextran sulfate is bound without Ca2+. Negatively charged phospholipids as PS do not bind dextran sulfate, even in the presence of millimolar concentrations of Ca2+. The adsorption of dextran sulfate results in an aggregation of vesicles due to a bridging mechanism. In all cases the aggregation is followed by a disaggregation toward higher dextran sulfate concentrations. The disaggregation process starts at polymer concentrations smaller than the concentration of the onset of saturation of the adsorption. By use of the probe dilution method a fusion of small DMPC and DMPC/PE vesicles in the presence of Ca2+ and dextran sulfate was found.  相似文献   

11.
Measurements of the fluorescent properties of 8-hydroxy-1,3,6-pyrenetrisulfonate (pyranine) enclosed within the internal space of Escherichia coli membrane vesicles enable recordings and quantitative analysis of: (i) changes in intravesicular pH taking place during oxidation of electron donors by the membrane respiratory chain; (ii) transient alkalization of the internal aqueous space resulting from the creation of outwardly directed acetate diffusion gradients across the vesicular membrane. Quantitation of the fluorescence variations recorded during the creation of transmembrane acetate gradients shows a close correspondence between the measured shifts in internal pH value and those expected from the amplitude of the imposed acetate gradients.  相似文献   

12.
Transmembrane electrical and pH gradients have been measured across human erythrocytes and peripheral blood lymphocytes using equilibrium distributions of radioactively labelled lipophilic ions, and of weak acids and weak bases, respectively. The distributions of methylamine, trimethylamine, acetic acid and trimethylacetic acid give calculated transmembrane pH gradients (pHe-pHi) for erythrocytes of between 0.14-0.21 for extracellular pH values of 7.28-7.16. The distributions of trimethylacetic acid. DMO and trimethylamine were determined for lymphocytes, establishing upper and lower limits of the calculated pH gradient over the external pH range of 6.7 to 7.7. Tritiated triphenylmethyl phosphonium ion (TPMP) and 14C-thiocyanate ion (SCN) equilibrium distributions were measured in order to calculate transmembrane electrical potentials, using tetraphenylboron as a catalyst to facilitate TPMP equilibrium. Transmembrane potentials of -7 to -10 mV were calculated from SCN and TPMP, respectively for red cells, and -35 to -52 mV respectively, in the case of lymphocytes. Distributions of TPMP and potassium ions were determined in the presence of valinomycin over a wide range of extracellular potassium concentrations for red cells and the calculated Nernst potentials for TPMP compared to the calculated potential using the Goldman equation for chloride and potassium ions. Distributions of TPMP, SCN and potassium ions were also determined for lymphocyte suspensions as a function of extracellular potassium and the calculated Nernst potentials for TPMP and SCN compared to the calculated potassium diffusion potential.  相似文献   

13.
We have identified [1-14C]-oxindole-3-acetic acid as a catabolic product of [1-14C]-indole-3-acetic acid metabolism in Zea mays seedlings. The isolation, and chemical and mass spectral characterization of oxindole-3-acetic acid from corn kernel tissue is described together with data suggesting oxindole-3-acetic acid to be a major catabolic product of indole-3-acetic acid.  相似文献   

14.
An experimental approach is described which provides information about the relative, effective size of phospholipid headgroups in bilayer vesicles. It is based on determination of the binding of lectins (Ricinus communis agglutinin or concanavalin A) to synthetic glycolipids inserted in such vesicles, using a vesicle agglutination assay. It is shown that the ability of a glycolipid containing a shorter (4-member) spacer arm to bind the appropriate lectin is highly sensitive to the headgroup structure of the surrounding phospholipid in mixed glycolipid-phospholipid vesicles. Furthermore, when the phospholipid was phosphatidate a change in protonation or in monovalent counter-ion species (Li+, NH+4, N(CH3)+4 or Na+) significantly influenced lectin binding. The interference with lectin binding described above was reduced when the glycolipid spacer arm was extended from a 4- to a 6-member length. Furthermore, the sensitivity to phospholipid headgroup structure or to changes in the ionic environment was completely eliminated when the glycolipid contained a longer (10- or 12-member) spacer arm between the hydrophobic part and the lectin-binding group. It is concluded that the modulation of lectin binding in the former case is due to steric inhibition determined by the effective (hydrated) size of the various phospholipid headgroups.  相似文献   

15.
Multilamellar phospholipid vesicles are introduced into the cis compartment on one side of a planar phospholipid bilayer membrane. The vesicles contain a water-soluble fluorescent dye trapped in the aqueous phases between the lamellae. If a vesicle containing n lamellae fuses with a planar membrane, an n-1 lamellar vesicle should be discharged into the opposite trans compartment, where it would appear as a discernible fluorescent particle. Thus, fusion events can be assayed by counting the number of fluorescent particles appearing in the trans compartment. In the absence of divalent cation, fusion does not occur, even after vesicles have been in the cis compartment for 40 min. When CaCl2 is introduced into the cis compartment to a concentration of greater than or equal to 20 mM, fusion occurs within the next 20 min; it generally ceases thereafter because of vesicle aggregation in the cis compartment. With approximately 3 x 10(8) vesicles/cm3 in the cis compartment, about 25-50 fusion events occur following CaCl2 addition. The discharge of vesicular contents across the planar membrane is the most convincing evidence of vesicle-membrane fusion and serves as a model for that ubiquitous biological phenomenon--exocytosis.  相似文献   

16.
The transport of protons across liposomes composed of phosphatidylcholine in response to electrical potentials or pH gradients has been investigated. The results support three major conclusions. The first of these concerns the need for reliable measurements of electrical potentials and pH gradients. It is shown that the potential probe tetraphenylphosphonium and the pH probe methylamine provide accurate and self consistent measures of electrical potentials and pH gradients respectively in these systems. Second, it is shown by two independent techniques that the pH gradients induced in response to valinomycin and potassium dependent electrical potentials are significantly smaller than would be expected for electrochemical equilibrium. The pH gradients observed are stable over an 8 h time course and are sensitive to the ionic composition of the buffers employed, where the presence of external sodium results in the smallest induced pH gradients. These results are discussed in terms of current models of proton conductance across membranes. In a final area of investigation, it is shown that valinomycin and carbonyl cyanide m-chlorophenyl hydrazone (CCCP) can transport sodium ions in a synergistic manner.  相似文献   

17.
Transmembrane pH gradients created across phospholipid vesicles give rise to time-dependent potentials as determined from the EPR spectra of phosphonium ion spin labels in the system. From the time-dependent spectra, the transmembrane H+/OH- current is obtained and hence the current-voltage curve for the vesicle membrane is obtained. The current-voltage curve is linear with a membrane resistance of 3 +/- 2 X 10(9) omega cm2 corresponding to a membrane permeability of 5 +/- 2 X 10(-7) cm/s. This unusually high permeability is further increased by small amounts of lipid oxidation, CHCl3 or the general anesthetic halothane.  相似文献   

18.
H Hauser  H H Mantsch  H L Casal 《Biochemistry》1990,29(9):2321-2329
31P NMR and infrared spectroscopic methods have been used to study the formation of small unilamellar vesicles by the pH-jump method. It is shown that increasing the pH of different lamellar phospholipid dispersions (phosphatidic acids and phosphatidylserines) induces a pH gradient. This pH gradient is estimated to be 4 +/- 1 pH units, and its direction is such that the inner monolayer of the vesicles is at lower pH. There is spectroscopic evidence for tighter packing of the lipid hydrocarbon chains in the inner monolayer, probably due to the constraints imposed by the high curvature of the small vesicles formed. These results are discussed in terms of the driving force of the spontaneous vesiculation.  相似文献   

19.
The existence of a proton pump associated with bovine cytochrome c oxidase (EC 1.9.3.1) has over the last few years been a matter of considerable dispute. In an attempt to resolve some of the problems with the measuring system we have synthesized fluorescein-phosphatidylethanolamine which when reconstituted with cytochrome c oxidase into phospholipid vesicles provided a reliable indicator of the intravesicular pH. It was observed that cytochrome c oxidase catalyzed the abstraction of almost 2 protons from the intravesicular medium/molecule of ferrocytochrome c oxidized. In parallel experiments whereby the extravesicular pH was measured with an electrode it was found that the enzyme appeared to be responsible for the appearance of almost 1.0 proton/molecule of ferrocytochrome c oxidized. Taken together these data unequivocally demonstrate that cytochrome c oxidase behaves as a proton pump. Furthermore, the other proton which was abstracted is believed to be used for the process of the reduction of oxygen. Similar experiments were performed with a cytochrome c oxidase preparation which was devoid of subunit III. Under these circumstances the enzyme appeared to be unable to translocate protons across the vesicular membrane but was competent to abstract protons from the intravesicular medium for the reduction of oxygen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号