首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The possibility that hormones control hepatic gluconeogenesis via the regulation of the rate of mitochondrial pyruvate carboxylation was investigated with the use of suspensions of liver cells isolated from fasted rats. The mitochondria prepared from liver cells were judged in good condition as they exhibited satisfactory phosphorus-oxygen and respiratory control ratios and transported Ca2+ and K+ ions in an energy-dependent manner. Addition of glucagon, epinephrine, or cyclic adenosine 3':5'-monophosphate to liver cells caused a 50 to 80% increase in the rate of glucose synthesis from lactate. When mitochondria were isolated from the cells after treatment with these agonists, they displayed 2- to 3-fold increases in the rate of pyruvate carboxylation, pyruvate decarboxylation, and pyruvate uptake. These mitochondrial changes are similar to those obtained in hepatic mitochondria prepared from intact, hormone-treated rats. The mitochondrial responses were specific for agents that stimulated gluconeogenesis; no response occurred with 5'-AMP or cyclic adenosine 2':3'-monophosphate. In the cell suspensions, the dose response curves for the activation of mitochondrial pyruvate metabolism and for increased glucose synthesis from L-lactate were coincident with four different agonists. The mitochondrial changes resulting from stimulation with glucagon developed in 1 to 2 min after the rise in cyclic adenosine 3':5'-monophosphate and occurred at least as early as the increase in the rate of gluconeogenesis. When the intracellular level of cyclic adenosine 3':5'-monophosphate returned to basal values, the rates of mitochondrial pyruvate carboxylation and glucose synthesis also declined to control levels. It is concluded that the rate of mitochondrial pyruvate metabolisms can be increased by hormones and cyclic nucleotides and that control of mitochondrial pyruvate carboxylation is an important regulatory site of hepatic gluconeogenesis.  相似文献   

2.
3.
4.
5.
6.
To estimate the degree of recycling of pyruvate during gluconeogenesis, an isotope tracer procedure was employed. Using the isolated, perfused rat liver with pyruvate-2-14C in the perfusion fluid, the 3-carbon acids lactate and pyruvate were isolated and the distribution of 14C in each carbon was assayed. It can be shown that the degree of recycling can be approximated as twice the sum of 14C in carbons 1 and 3. Glucose, acetoacetate, and β-hydroxybutyrate were also determined, and their 14C distribution estimated by appropriate degradation procedures. In livers from fasted rats, recycling of pyruvate during 1 hr incubation occurred at a rate of 0.21 μmoles ± 0.02 (SE)/min/g while gluconeogenesis occurred at a rate of 0.49 ± 0.11 μmoles pyruvate-2-14C/min/g. In livers from carbohydrate-fed rats, the ratio was reversed, with 0.35 ± 0.06 μmoles pyruvate-2-14C recycled and only 0.09 ± 0.03 μmoles converted to glucose. These patterns were not affected by the simultaneous presence of octanoate in the perfusion, during which ketone body production was greatly increased. Only about 20% of the ketone bodies formed were derived from pyruvate, much less with octanoate present, and over 95% of the total radioactivity was in carbons 1 and 3 of acetoacetate as anticipated from the degree of pyruvate recycling. The glucose invariably had 3–4% of its total activity in carbons 3 and 4 and the remainder distributed approximately equally in carbons 1, 2, 5, and 6. The radioactivity in respired CO2 indicated that about 13–25% of the total O2 uptake was due to pyruvate oxidation to CO2.  相似文献   

7.
The effects of glucagon and the alpha-adrenergic agonist, phenylephrine, on the rate of 14CO2 production and gluconeogenesis from [1-14C]lactate and [1-14C]pyruvate were investigated in isolated perfused livers of 24-h-fasted rats. Both glucagon and phenylephrine stimulated the rate of 14CO2 production from [1-14C]lactate but not from [1-14C]pyruvate. Neither glucagon nor phenylephrine affected the activation state of the pyruvate dehydrogenase complex in perfused livers derived from 24-h-fasted rats. 3-Mercaptopicolinate, an inhibitor of the phosphoenolpyruvate carboxykinase reaction, inhibited the rates of 14CO2 production and glucose production from [1-14C]lactate by 50% and 100%, respectively. Furthermore, 3-mercaptopicolinate blocked the glucagon- and phenylephrine-stimulated 14CO2 production from [1-14C]lactate. Additionally, measurements of the specific radioactivity of glucose synthesized from [1-14C]lactate, [1-14C]pyruvate and [2-14C]pyruvate indicated that the 14C-labeled carboxyl groups of oxaloacetate synthesized from 1-14C-labeled precursors were completely randomized and pyruvate----oxaloacetate----pyruvate substrate cycle activity was minimal. The present study also demonstrates that glucagon and phenylephrine stimulation of the rate of 14CO2 production from [1-14C]lactate is a result of increased metabolic flux through the phosphoenolpyruvate carboxykinase reaction, and phenylephrine-stimulated gluconeogenesis from pyruvate is regulated at step(s) between phosphoenolpyruvate and glucose.  相似文献   

8.
Oxalate was shown to enter isolated rat hepatocytes and to inhibit gluconeogenesis from lactate, pyruvate, and alanine, but not from glutamine, proline, propionate or dihydroxyacetone. Oxalate apparently acts by inhibiting pyruvate carboxylase (EC 6.4.1.1). It is known to inhibit the isolated enzyme, and inhibition of gluconeogenesis was much greater in a bicarbonate-deficient medium where pyruvate carboxylase activity limits the overall rate of the pathway. A slight inhibition of gluconeogenesis from asparagine was observed, suggesting that oxalate may also inhibit gluconeogenesis at another site. Chelation of extracellular Ca2+ does not contribute to the inhibition of gluconeogenesis. Compared to oxalate, other Ca2+ chelators have little effect upon gluconeogenesis. Also, oxalate inhibits gluconeogenesis effectively both in low Ca2+ medium and in medium containing 2.6 mM Ca2+. Chelation of intracellular Ca2+ also appears to be of little importance, since oxalate does not block the glycogenolytic effects of epinephrine, vasopressin, and angiotensin which are thought to act via Ca2+ as the second messenger. The inhibition of gluconeogenesis could conceivably contribute to the toxic actions of oxalate and to the hypoglycemic action of dichloroacetate, a compound that is metabolized to oxalate. However, oxalate did not cause hypoglycemia in the suckling rat, a model in vivo system very dependent upon gluconeogenesis for maintenance of normal blood glucose levels. Thus, inhibition of gluconeogenesis is probably of little importance in oxalate toxicity and the hypoglycemic effects of dichloroacetate.  相似文献   

9.
Isolated rat liver mitochondria incubated in the presence of 3-hydroxybutyrate display a markedly increased rate of pyruvate carboxylation as measured by malate and citrate production from pyruvate. The stimulation was demonstrable both with exogenously added pyruvate, even at saturating concentration, and with pyruvate intramitochondrially generated from alanine. The concentration of DL-3-hydroxybutyrate required for half-maximal stimulation amounted to about 1.5 mM. The intramitochondrial ATP/ADP ratio as well as the matrix acetyl-CoA level was found to remain unchanged by 3-hydroxybutyrate exposure, which, however, lowered the absolute intramitochondrial contents of the respective adenine nucleotides. The effects of 3-hydroxybutyrate were diminished by the concomitant addition of acetoacetate. Moreover, a direct relationship between mitochondrial reduction by proline and the rate of pyruvate carboxylation was observed. The results seem to indicate that the mitochondrial oxidation--reduction state might be involved in the expression of the 3-hydroxybutyrate effect. As to the physiological relevance of the findings, 3-hydroxybutyrate could be shown to activate pyruvate carboxylation in isolated hepatocytes.  相似文献   

10.
1. The reaction pathway for the carboxylation of pyruvate, catalysed by pig liver pyruvate carboxylase, was studied in the presence of saturating concentrations of K(+) and acetyl-CoA. 2. Free Mg(2+) binds to the enzyme in an equilibrium fashion and remains bound during all further catalytic cycles. MgATP(2-) binds next, followed by HCO(3) (-) and then pyruvate. Oxaloacetate is released before the random release, at equilibrium, of P(i) and MgADP(-). 3. This reaction pathway is compared with the double displacement (Ping Pong) mechanisms that have previously been described for pyruvate carboxylases from other sources. The reaction pathway proposed for the pig liver enzyme is superior in that it shows no kinetic inconsistencies and satisfactorily explains the low rate of the ATP[unk][(32)P]P(i) equilibrium exchange reaction. 4. Values are presented for the stability constants of the magnesium complexes of ATP, ADP, acetyl-CoA, P(i), pyruvate and oxaloacetate.  相似文献   

11.
Klyuyeva A  Tuganova A  Popov KM 《FEBS letters》2007,581(16):2988-2992
Dichloroacetate (DCA) is a promising anticancer and antidiabetic compound targeting the mitochondrial pyruvate dehydrogenase kinase (PDHK). This study was undertaken in order to map the DCA-binding site of PDHK2. Here, we present evidence that R114, S83, I157 and, to some extent, H115 are essential for DCA binding. We also show that Y80 and D117 are required for the communication between the DCA-binding site and active site of PDHK2. These observations provide important insights into the mechanism of DCA action that may be useful for the design of new, more potent therapeutic compounds.  相似文献   

12.
  • 1.1. With pyruvate as the gluconeogenic substrate, pyruvate kinase flux, estimated isotopically, and lactate formation were inhibited by glucagon, but only slightly affected by epinephrine.
  • 2.2. The glucagon effect was unchanged in the absence of calcium.
  • 3.3. Ethanol increased lactate formation from pyruvate, but depressed pyruvate kinase flux.
  • 4.4. These results support the role of pyruvate kinase m the cyclic mechanism which transfers mitochondrial reducing hydrogen to the cytosol.
  • 5.5. Glucagon and, to a lesser degree, epinephrine inhibit lactate formation from fructose or dihydroxyacetone.
  • 6.6. Ethanol also inhibits lactate formation from these substrates, suggesting the possibility that NADH may in some manner regulate pyruvate kinase flux.
  相似文献   

13.
14.
Experiments were performed to determine if catecholamines can regulate control points in the gluconeogenic pathway, such as mitochondrial pyruvate carboxylation and pyruvate kinase activity, via an alpha-adrenergic, adenosine 3':5'-monophosphate-independent mechanism. Of a number of alpha agonists tested, only norepinephrine, epinephrine, and phenylephrine caused an increase in mitochondrial pyruvate metabolism. The effects of catecholamines on pyruvate carboxylation were not attenuated by 1-propranolol which abolishes changes in cyclic nucleotide levels but were blocked by alpha antagonists such as ergotamine, phenoxybenzamine, and phentolamine. Time course experiments demonstrated that the effects of catecholamines on the mitochondria and on carbohydrate metabolism correlated temporally with the concentration of epinephrine in the medium but not with the small changes in adenosine 3':5'-monophosphate. The effects of catecholamines appeared to require extracellular Ca2+ ion. The observation that catecholamines do not increase gluconeogenesis to the same extent as glucagon was not due to a differential effect on mitochondrial CO2 fixation. Rather, catecholamines caused a smaller inhibition of pyruvate kinase activity than did glucagon. The effects of catecholamines on pyruvate kinase also appeared to be mediated by an alpha-adrenergic, adenosine 3':5'-monophosphate-independent mechanism.  相似文献   

15.
16.
17.
18.
1. The carboxylation of pyruvate to oxaloacetate by pyruvate carboxylase in guinea-pig liver mitochondria was determined by measuring the amount of (14)C from H(14)CO(3) (-) fixed into organic acids in the presence of pyruvate, ATP, Mg(2+) and P(i). The main products of pyruvate carboxylation were malate, fumarate and citrate. Pyruvate utilization, metabolite formation and incorporation of (14)C from H(14)CO(3) (-) into these metabolites in the presence and the absence of ATP were examined. The synthesis of phosphoenolpyruvate from pyruvate and bicarbonate is minimal during continued oxidation of pyruvate. Larger amounts of phosphoenolpyruvate are formed from alpha-oxoglutarate than from pyruvate. Addition of glutamate, alpha-oxoglutarate or fumarate did not appreciably increase formation of phosphoenolpyruvate when pyruvate was used as substrate. With alpha-oxoglutarate as substrate addition of fumarate resulted in increased formation of phosphoenolpyruvate, whereas addition of succinate inhibited phosphoenolpyruvate formation. In the presence of added oxaloacetate guinea-pig liver mitochondria synthesized phosphoenolpyruvate in amount sufficiently high to play an appreciable role in gluconeogenesis. 2. Addition of fatty acids of increasing carbon chain length caused a strong inhibition of pyruvate oxidation and phosphoenolpyruvate formation, and greatly promoted carbon dioxide fixation and malate, citrate and acetoacetate accumulation. The incorporation of (14)C from H(14)CO(3) (-), [1-(14)C]pyruvate and [2-(14)C]pyruvate into organic acids formed was examined. 3. It is concluded that guinea-pig liver pyruvate carboxylase contributes significantly to gluconeogenesis and that fatty acids and metabolites play an important role in its regulation.  相似文献   

19.
20.
The rate of oxidation of L-[1-14C]leucine to 14CO2 by isolated rat hepatocytes is increased by pyruvate and dichloroacetate. This effect is specific for L-leucine, not being observed for L-valine, L-isoleucine, or D-leucine. Transamination, the rate-limiting step of L-leucine catabolism in the liver, is the site of stimulation, because uptake of L-leucine by the cells and the oxidation of its transamination product, alpha-ketoisocaproate, are not increased. Measurement of steady state levels of alpha-ketoisocaproate indicate that both pyruvate and dichloroacetate promote the transamination of L-leucine, thereby increasing the availability of substrate for decarboxylation by the alpha-ketoisocaproate dehydrogenase complex (EC 1.2.4.3). Pyruvate stimulation of transamination is secondary to the provision of keto acid acceptors for the amino group of L-leucine. The mechanism of the effect of dichloroacetate remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号