首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modes of binding of a new class of impermeant metal-chelating probe, the complex of 111In3+ to 1-(p-benzenediazonium) ethylenediamine tetraacetic acid (azo-phenyl-EDTA), to human and rabbit erythrocyte membranes and the effect of binding on the function of rabbit platelets have been studied. The metal chelate, azo-phenyl-EDTA.[111In3+] bound covalently to membrane proteins following reaction with intact erythrocytes. The amount and the pattern of labeling was assessed by sodium dodecyl sulfate (SDS)-polyacrylamide disc and slab gels for radioactivity. The pattern of labeling of intact human erythrocytes by azo-phenyl-EDTA.[111In3+], by pyridoxal phosphate-NaB3H7 and by galactose oxidase-NaB3H4 was also compared. The following results were obtained: (a) The pattern of labeling of intact human erythrocyte by azo-phenyl-EDTA.[111In3+] differed from other commonly used probes for labeling external membrane surfaces. Five polypeptides were labeled by the metal chelates. In addition to the known major proteins (protein band III, PAS-1, PAS-2 and PAS-3 of Fairbanks et al. (1972) Biochemistry 10, 2606--2617) a protein (radioactive band 4) which migrated slightly slower than PAS-3 in SDS gel was labeled heavily by the metal chelate. This protein has an apparent molecular weight of 37,500 in 8.4% acrylamide-SDS gel. About 40% of bound radioactivity was found in this protein. The diazo linkage of the metal chelate to this protein was found to be especially unstable to heat. (b) In rabbit erythrocyte membranes, the metal chelate bound to three polypeptides with apparent molecular weights of 96,000, 43,000 and 33,000 in 8.4% acrylamide gel. They are probably glycoproteins in nature. (c) The binding of the probe to platelets did not affect the platelet aggregability induced by adenosine diphoshpate. In vivo studies indicated that the labeled platelets accumulated at the plague of atherosclerotic rabbits. (d) The bifunctional analog of EDTA may permit new applications of metals with useful physical properties for studies of cell membranes.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号