首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anti-IgE-induced O2? production by human basophils was inhibited by potent inactivators of serine proteases. The inhibitory effect of the inhibitor and substrate for chymotrypsin-type protease was much greater than that of those substances for trypsin-type protease. These findings suggest that chymotrypsin-like serine proteases are involved in basophil O2? production.  相似文献   

2.
The interaction of the inhibitor VJ (InhVJ), isolated from sea anemone R. macrodactylus, with different proteases was investigated using the method of biosensor analysis. The following enzymes were tested: serine proteases (trypsin, α-chymotrypsin, plasmin, thrombin, kallikrein), cysteina protease (papain) and aspartic protease (pepsin). In the rage of the concentrations studied (10–400 nM) inhibitor VJ interacted only with trypsin and α-chymotrypsin. The intermolecular complexes formation between inhibitor VJ and each of these enzymes was characterized by the following kinetic and thermodynamics parameters: KD = 7.38 × 10?8 M and 9.93 × 10?7 M for pairs InhVJ/trypsin and InhVJ/α-chymotrypsin, respectively.  相似文献   

3.
A new serine protease with fibrinolytic activity from a marine invertebrate, Urechis unicinctus, was purified to electrophoretic homogeneity using column chromatography. SDS-PAGE of the purified enzyme showed a single polypeptide chain with MW ~20.8 kDa. Its N-terminal sequence was IIGGSQAAITSY. The purified enzyme, UFEIII, was stable at pH 6–10 below 60 °C with an optimum pH of 8.5 at approx. 55 °C. The enzyme activity was significantly inhibited by PMSF and SBTI suggesting that it was a serine protease. In fibrin plate assays, UFEIII was contained 1.46 × 10U (urokinase units) mg?1 total fibrinolytic activity, which consisted of 692 U mg?1 direct fibrinolytic activity and 769 U mg?1 plasminogen-activator activity. Km and Vmax values for azocasein were 1 mg ml?1 and 43 μg min?1 ml?1, respectively.  相似文献   

4.
Abstract

The protease from Aspergillus tamarii Kita UCP1279 extraction by aqueous two-phase PEG-Citrate (ATPS) systems, using a factorial design 24, was investigated. Then, the variables studied were polyethylene glycol (PEG) molar mass (MPEG), concentrations of PEG (CPEG) and citrate (CCIT), and pH. The responses analyzed were the partition coefficient (K), activity yield (Y) and purification factor (PF). The thermodynamic parameters of the ATPS partition were estimated as a function of temperature. ATPS was able to pre-purify the protease (PF = 1.6) and obtained 84% activity yield. The thermodynamic parameters ΔG°m (?10.89?kJ mol?1), ΔHm (?5.0?kJ?mol?1) and partition ΔSm (19.74?J mol?1 K?1) showed that the preferential migration of almost all protein contaminants of the crude extract to the salt-rich phase, while the preferred protease was the PEG rich phase. The extracted enzyme presents optimum temperature and pH at range of 40–50?°C and 9.0–11.0, respectively. Moreover, the enzyme was identified as serine protease based on inhibition profile. ATPS showed the satisfactory performance as the first step for Aspergillus tamarii Kita UCP1279 protease pre-purification.  相似文献   

5.
Proteolytic bacteria isolated from municipal solid wastes (MSW) were identified as Serratia marcescens A3 and Pseudomonas putida A2 based on 16S rDNA sequencing. Protease produced through fermentation of organic MSW by these bacteria under some optimized physicochemical parameters was partially purified and characterized. The estimated molecular mass of the partially purified protease from S. marcescens and P. putida was approximately 25 and 38 kDa, respectively. Protease from both sources showed low Km 0.3 and 0.5 mg ml?1 and high Vmax 333 and 500 µmole min?1 at 40?°C, and thermodynamics analysis suggested formation of ordered enzyme-substrate (E-S) complexes. The activation energy (Ea) and temperature quotient (Q10) of protease from S. marcescens and P. putida were 16.2 and 19.9 kJ/mol, and 1.4 and 1.3 at temperature range from 20 to 40 °C, respectively. Protease of the both bacterial isolates was serine and cysteine type. The protease retained approximately 97% of activity in the presence of sodium dodecyl sulphate. It was observed that the purified protease of S. marcescens could remove blood stains from white cotton cloth and degrade chicken flesh remarkably. Our study revealed that organic MSW can be used as raw materials for bacterial protease production and the protease produced by S. marcescens A3 might be potential for applications.  相似文献   

6.
West Nile virus (WNV) is a member of the flavivirus genus belonging to the Flaviviridae family. The viral serine protease NS2B/NS3 has been considered an attractive target for the development of anti-WNV agents. Although several NS2B/NS3 protease inhibitors have been described so far, most of them are reversible inhibitors. Herein, we present a series of α-aminoalkylphosphonate diphenyl esters and their peptidyl derivatives as potent inhibitors of the NS2B/NS3 protease. The most potent inhibitor identified was Cbz-Lys-Arg-(4-GuPhe)P(OPh)2 displaying Ki and k2/Ki values of 0.4 µM and 28 265 M?1s?1, respectively, with no significant inhibition of trypsin, cathepsin G, and HAT protease.  相似文献   

7.
This study reports the purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis, strain X5B. The enzyme was purified to homogeneity by acetone precipitation, ultrafiltration and carboxymethyl (CM) cation exchange chromatography, respectively. The purified protease was a monomeric enzyme with a relative molecular mass of 48–50 kDa and it was inhibited by PMSF indicating that it is a serine-protease. The optimum pH, temperature and NaCl concentration were 9.5, 35 °C and 0.98 M, respectively. The enzyme showed a significant tolerance to salt and alkaline pH. It retained approximately 50 % of activity at 2.5 M NaCl and about 70 % of activity at highly alkaline pH of 11.0; therefore, it was a moderately halophilic and also can be activated by metals, especially by Ca2+. The specific activity of the purified protease was measured to be 425.23 μmol of tyrosine/min per mg of protein using casein as a substrate. The apparent K m and V max values were 0.126 mM and 0.523 mM/min, respectively and the accurate value of k cat was obtained as 3.284 × 10?2 s?1. These special and important characteristics make this serine protease as valuable tool for industrial applications.  相似文献   

8.
The present study describes the purification and physicochemical and biochemical characterization of trypsin-like protease from green-seeded chickpea (Cicer arientum). The crude extract of chickpea trypsin (CpT) was obtained by homogenization followed by differential ammonium sulfate precipitation. The CpT was purified by ion-exchange chromatography on diethylaminoethyl (DEAE) column, pre-equilibrated with 20?mM tris-CaCl2 buffer (pH 8.2) with a flow rate of 0.5?mL min?1. The molecular weight and purity of ~23?kDa of CpT were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Activity of protease was determined using Nα-benzoyl-DL-arginine-p-nitroanilide as chromogenic substrate and CpT purified showed a specific inhibitor activity of 26978.7697?U?mg?1, fold purity of 9.8, and the yield of 70.2%. The characterization was performed for thermal stability, pH profile, and effect of various inhibitors on enzymatic activity. The protein isolated showed stability in the neutral to mild alkaline pH range and thermostability up to 50°C. CpT confirmed its serine nature as it was appreciably inhibited by serine protease inhibitors (maximum 6%), whereas metalloprotease inhibitors barely affected the activity of the enzyme (85%). To the best of our knowledge, it is first reported on purification of protease with trypsin-like properties, from this source.  相似文献   

9.
A serine protease inhibitor with a molecular mass of 6106±2Da (designated as InhVJ) was isolated from the tropical anemone Radianthus macrodactylus by a combination of liquid chromatography methods. The molecule of InhVJ consists of 57 amino acid residues, has three disulfide bonds, and contains no Met or Trp residues. The N-terminal amino acid sequence of the inhibitor (19 aa residues) was established. It was shown that this fragment has a high degree of homology with the N-terminal amino acid sequences of serine protease inhibitors from other anemone species, reptiles, and mammals. The spatial organization of the inhibitor at the levels of tertiary and secondary structures was studied by the methods of UV and CD spectroscopy. The specific and molar absorption coefficients of InhVJ were determined. The percentage of canonical secondary structure elements in the polypeptide was calculated. The inhibitor has a highly ordered tertiary structure and belongs to mixed α/β-or α + β polypeptides. It was established that InhVJ is highly specific toward trypsin (K i 2.49 × 10?9 M) and α-chymotrypsin (K i 2.17 × 10?8 M) and does not inhibit other proteases, such as thrombin, kallikrein, and papain. The inhibitor InhVJ was assigned to the family of the Kunitz inhibitor according to its physicochemical properties.  相似文献   

10.
Summary A gene, aprP, encoding an extracellular alkaline serine protease from a newly isolated Pseudomonas sp. KFCC 10818 was cloned and characterized. Nucleotide sequence analysis revealed an open reading frame of 1,266 nucleotides which could encode a polypeptide comprised of 422 amino acids. The C-terminal 283 residues showed an overall sequence homology with the subtilisin-type serine proteases. When expressed in E. coli, the alkaline protease, AprP, was released to the culture medium. The purified AprP was most active at pH 11. The k Cat/K m value of this enzyme was 9.2 × 103 S–1mM–1, which is much higher than those of subtilisins.  相似文献   

11.
This research investigates the synthesis and inhibitory potency of a series of novel dipeptidyl allyl sulfones as clan CA cysteine protease inhibitors. The structure of the inhibitors consists of a R1-Phe-R2-AS-Ph scaffold (AS?=?allyl sulfone). R1 was varied with benzyloxycarbonyl, morpholinocarbonyl, or N-methylpiperazinocarbonyl substituents. R2 was varied with either Phe of Hfe residues. Synthesis involved preparation of vinyl sulfone analogues followed by isomerization to allyl sulfones using n-butyl lithium and t-butyl hydroperoxide. Sterics, temperature and base strength were all factors that affected the formation and stereochemistry of the allyl sulfone moiety. The inhibitors were assayed with three clan CA cysteine proteases (cruzain, cathepsin B and calpain I) as well as one serine protease (trypsin). The most potent inhibitor, (E)-Mu-Phe-Hfe-AS-Ph, displayed at least 10-fold selectivity for cruzain over clan CA cysteine proteases cathepsin B and calpain I with a kobs/[I] of 6080?±?1390?M?1s?1.  相似文献   

12.
The bacterial serine protease, SGPB, was inhibited by two specific tripeptide chloromethyl ketones, N-t-butyloxycarbonyl-l-alanylglycyl-l-phenylalanine chloromethyl ketone (BocAGFCK) and N-t-butyloxycarbonyl-glycyl-l-leucyl-l-phenylalanine chloromethyl ketone (BocGLFCK). Crystals of the inhibited complexes were grown and examined by X-ray crystallographic methods. The peptide backbone of each inhibitor is bound by three hydrogen bonds to the main chain of residues Ser214 to Gly216. There are two well-characterized hydrophobic pockets, S1 and S2, on the surface of SGPB which accommodate the P1 and P2 side-chains of the BocGLFCK inhibitor. A conformational change of Tyr171 is induced by the binding of this inhibitor. Both inhibitors make two covalent bonds to the SGPB enzyme. The imidazole ring of His57 is alkylated at the N?2 atom and Oγ of Ser195 forms a hemiketal bond with the carbonyl-carbon atom of the inhibitor. Comparison of the binding modes of the two tripeptides in conjunction with the differences in their inhibition constants (KI) allows one to estimate the binding energy of the leucyl side-chain as ?2.6 kcal mol?1. The importance of an electrophilic component in the serine protease mechanism, which involves the polarization of the susceptible carbonyl bond of a substrate or inhibitor by the peptide NH groups of Gly193 and Ser195 is discussed.  相似文献   

13.
A serine protease was isolated from midguts of the bumblebee male Bombus terrestris by a combination of precipitation procedures with column chromatography. The purified enzyme exhibited two bands with molecular masses of 25 and 26 kDa as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These bands showed a proteolytic activity in zymography assay. Midgut enzymes showed optimum proteolytic activity at pH 9 and 35°C using N‐succinyl‐L‐alanyl‐L‐alanyl‐L‐prolyl‐L‐phenyl‐alanine 4‐nitroanilide as a substrate. The Michaelis constant (Km) and maximum reaction rate (Vmax) were 0.55 ± 0.042 mM and 0.714 ± 0.056 μmol p‐nitroalanine produced min?1 mg protein?1, respectively. Inhibition was affected by trypsin inhibitor, but not by phenylmethylsulfonyl fluoride and N‐tosyl‐L‐phenylalanine chloromethyl ketone, which indicated the trypsin‐like but not chymotrypsin‐like specificity. The identity of the serine protease was confirmed by nanoliquid‐tandem mass spectrometry. Eleven unique peptides of the B. terrestris serine protease were found. It shows high homology to a previously reported B. ignitus serine protease covering more than 65% of the protein amino acid sequence.  相似文献   

14.
A quantitative assay employing binding of [3H]diisopropylfluorophosphate ([3H]DFP) and SDS-polyacrylamide gel electrophoresis was used to measure serine hydrolases in cell-free extracts from rat splenic lymphocytes. After labeling with [3H]DFP at pH 7, six major serine hydrolases are detected on 10% gels, having molecular weights of 78, 55, 34, 30, 28 and 17 (· 10?3). When labeled at pH 4, only four activities are measured, with Mr or 79, 55, 33 and 17 (· 10?3). Incubation of splenic lymphocytes for 8 h in vitro with 1 μM dexamethasone followed by [3H]DFP labeling at pH 7 produces a 91% increase in the 17000 [3H]DFP. Hormone treatment for 8 h with subsequent labeling at pH 4 results in a 15% increase in the largest (78000) species, as well as 73% increase in the 17000 enzyme, compared with lysates from cells incubated without steroid. These effects are not observed after only 4 h of glucocorticoid exposure. Dexamethasone treatment for 8 h does not produce a decrease in any of these serine hydrolases, nor is there an apparent induction of new enzymes (i.e., having a molecular weight different from the preexisting species). Studies examining the effect of protease inhibitors on the [3H]DFP capacity of these proteins, show that the 17000 enzyme is sensitive to the protease inhibitor, pepstatin A, as well as the sulfhydryl reagents dithiothreitol and N-ethylmaleimide. These result suggest that this dexamethasone-responsive enzyme is a protease which requires a free thiol group for optimal activity. These findings are discussed with regard to the mechanism of glucocorticoid action in lymphocytes.  相似文献   

15.
An acid-stable and heat-labile proteinous protease inhibitor which was found in spinach leaves but not in seeds was isolated by sequential chromatography and preparative isoelectric focusing. The isoelectric point of this inhibitor was 4.5. The inhibitor had a Mr of ca 18 000 and was rich in aspartic acid and glycine; it had 4 half-cystine, 2 tryptophan and no methionine residues. Its extinction coefficient (E|cm%) was 13.7 at 280 nm. The inhibition was competitive and the dissociation constant was 3.32 × 10?13 M. The inhibitor was specific to serine proteases and strongly inhibited trypsin and weakly inhibited α-chymotrypsin and kallikrein.  相似文献   

16.
Abstract

We report the optimization of production of a halotolerant, thermoalkaline protease by Bacillus cereus SIU1, at shake-flask and bench-scale bioreactor level, using conventional and response surface methods. The basal medium supplemented with optimized (w/v) 0.8% glucose, 1.5% peptone, and 0.4% yeast extract produced 224 Uml? 1 alkaline protease after 20 h incubation. Enzyme yield was further increased to 491 Uml? 1 when the fermentation broth was supplemented with 0.02% (w/v) Ca2+. Optimization of physical factors resulted in still higher protease level of 651 Uml? 1 within 18 h fermentation at initial pH 9.0, 50°C, and 150 rpm agitation. Statistically designed experiments revealed significant effects of peptone and CaCl2 on protease production. A maximum of 749 protease Uml? 1 was produced at optimum factor levels (w/v) of peptone 1.75%, yeast extract 0.4%, CaCl2 0.025%, and pH 9.0 after 18 h incubation. Optimization of agitation and aeration rates in bench-scale bioreactors further enhanced the enzyme yield to 941 protease Uml? 1 at 125 rpm and 2.0 vvm aeration. Optimization of protease production by conventional and statistical approaches resulted in a ~10.7-fold increase (941 Uml? 1) compared to un-optimized conditions (88 Uml? 1).  相似文献   

17.
An alkaline serine-proteinase from Bacillus sp. PN51 isolated from bat feces collected in Phang Nga, Thailand, was purified and characterized. The molecular mass was estimated to be 35.0 kDa. The N-terminal 25 amino acid sequence was about 70% identical with that of Natrialba magadii halolysin-like extracellular serine protease. The enzyme showed the highest proteinase activity at 60 °C at pH 10.0. The activity was strongly inhibited by PMSF and chymostatin. The proteinase activity was not affected by the presence of 2% urea, 2% H2O2, 12% SDS, 15% triton X-100, or 15% tween 80. The proteinase preferred Met, Leu, Phe, and Tyr residues at the P1 position, in descending order. The k cat, K m and k cat/K m values for Z-Val-Lys-Met-MCA were 16.8±0.14 min?1, 5.1±0.28 μM, and 3.3±0.28 μM?1 min?1 respectively. This is the first report of an alkaline serine-proteinase with extremely high stability against detergents such as SDS.  相似文献   

18.
The entomopathogenic fungus Verticillium lecanii is a well-known biocontrol agent. V. lecanii produces subtilisin-like serine protease (Pr1), which is important in the biological control activity of some insect pests by degrading insect cuticles. In this study, a subtilisin-like serine protease gene VlPr1 was cloned from the fungus and the VlPr1 protein was expressed in Escherichia coli. The VlPr1 gene contains an open reading frame (ORF) interrupted by three short introns, and encodes a protein of 379 amino acids. Protein sequence analysis revealed high homology with subtilisin serine proteases. The molecular mass of the protease was 38 kDa, and the serine protease exhibited its maximal activity at 40°C and pH 9.0. Protease activity was also affected by Mg2+ and Ca2+ concentration. The protease showed inhibitory activity against several plant pathogens, especially towards Fusarium moniliforme.  相似文献   

19.
Although numerous Kunitz‐type toxins were isolated from snake venom, no bifunctional Kunitz‐type snake toxins with protease and potassium channel inhibiting properties have been reported till now. With the help of bioinformatics analyses and biological experiments, we characterized Kunitz‐type snake toxin BF9 as a bifunctional peptide. Enzyme and inhibitor reaction kinetics experiments showed that BF9 inhibited α‐chymotrypsin with Ki value of 1.8 × 10?8 M. Electrophysiological experiments showed that BF9 inhibited the Kv1.3 potassium channel with an IC50 of 120.0 nM, which demonstrated that serine protease inhibitor BF9 could also inhibit potassium channels. In addition, the key amino acids of BF9 responsible for the unique bifunctional mechanism are further investigated. To the best of our knowledge, BF9 is the first Kunitz‐type snake peptide with the unique bifunctionality of potassium channel and serine protease inhibiting properties, providing novel insights into divergent evolution and functional applications of snake Kunitz‐type peptides.  相似文献   

20.
The purification and characterization of psychro‐thermoalkalistable protease from psychrotrophic Pseudomonas putida isolate is being reported for the first time. A ~53 kDa protease was purified 21.4‐folds with 57.2% recovery by ultrafiltration and hydrophobic interaction chromatography. Kinetic analyses revealed the Km and Vmax to be 1.169 mg mL?1 and 0.833 mg mL?1 min?1, respectively. The kcat value of 3.05 × 102 s?1 indicated high affinity and catalytic efficiency toward casein. The protease was most active at pH 9.5 and 40°C, with 100% stability in pH and temperature range of 6.0–11.0 and 10–40°C, respectively. Presence of Zn2+ increased the thermostability of protease (at 70°C) by 433%. Ethylene diamine tetra acetic acid (EDTA) and 1,10‐phenanthroline were inhibitory, whereas phenyl methyl sulfonyl fluoride (PMSF), p‐chloro mercuric benzoate (PCMB), and β‐mercaptoethanol were ineffective, revealing the enzyme to be a metalloprotease. Zinc, calcium, iron, nickel, and copper at 1 mM increased the enzyme activity (102–134%). Complete reversion of enzyme inhibition (caused by Ethylene diamine tetra acetic acid [EDTA]) by Zn2+ affirmed this enzyme as zinc‐dependent metalloprotease. At 0.1% concentration, Triton X‐100 and Tween 80 slightly increased, while SDS and H2O2 reduced the protease activity. In the presence of 0.1% commercial detergents, the enzyme was fairly stable (54–81%). In the presence of organic solvent, the protease was remarkably stable exhibiting 72–191% activities. In contrast, savinase exhibited good stability in the presence of hydrophilic solvents, while chymotrypsin showed elevated activities with benzene, toluene, and xylene only. Circular dichroism analysis revealed the protease as a β‐rich protein, having large fraction (~40%) of β‐sheets. Presence of different environmental conditions altered the β‐content, which accordingly affected the protease activity. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号