首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified phosphatidylcholine exchange protein was used to exchange phosphatidylcholine between homogeneous single-walled phosphatidylcholine vesicles and human erythrocyte ghosts. When excess ghosts were present, it was found that only 70% of the vesicle phosphatidylcholine was available for exchange. This fraction corresponds closely to the amount of phosphatidycholine in the outer monolayer of these vesicles, indicating that only the outer surface of the vesicle is accessible to the exchange protein. Also, it was found that all phosphatidylcholine introduced into vesicles by the exchange protein was available for subsequent exchange. Using the exchange protein, asymmetrical vesicles were prepared in which the outer monolayer was either enriched or depleted in radioactive phosphatidylcholine as compared to the inner monolayer. Re-equilibration of the radioactivity between the two surfaces of the vesicle (flip-flop) could not be detected, even after 5 days at 37degrees. It is estimated that the half-time for flip-flop is in excess of 11 days at 37degrees. These results indicate that the properties of the exchange protein can be expolited to measure phosphatidylcholine flip-flop rates and possible phosphatidylcholine asymmetry in biological and model membranes, without altering the structure of the membrane.  相似文献   

2.
3.
By fractionation of rat liver cytosol with 70% saturation ammonium sulphate, a soluble fraction showing high affinity for oleic acid was obtained. The binding of oleic acid to this fraction was inhibited by flavaspidic acid. The molecular weight of the main protein present in this fraction was 12 000 as determined by SDS-poly-acrylamide-gel electrophoresis. This soluble fraction stimulated the transfer of oleic acid from microsomes to phosphatidylcholine liposomes as demonstrated by a transfer assay in vitro. The behaviour of this fraction is similar to that described for fatty-acid binding protein.  相似文献   

4.
Three model membrane systems have been characterized in terms of their interaction with phospholipid exchange proteins. Large unilamellar vesicles of phosphatidylcholine prepared by ether vaporization are shown to be homogeneous by gel filtration. Phospholipid exchange proteins from three sources are capable of catalyzing the rapid exchange of approximately half of the phospholipid from these vesicles. The remaining pool of radioactive phospholipid is virtually nonexchangeable (t1/2 of several days). Small unilamellar vesicles of phosphatidylcholine prepared by cholate dialysis also exhibit two pools of phospholipid (65% rapidly exchangable, 35% very slowly exchangeable) when incubated with beef liver phospholipid exchange protein. Cytochrome oxidase vesicles prepared both by a cholate dialysis method and by a direct incorporation method have been fractionated on a Ficoll discontinuous gradient, and tested for interaction with beef heart exchange protein. Two pools of phospholipid are once again observed (70% rapidly exchangable, 30% nonexchangeable), even for vesicles which have incorporated the transmembranous enzyme at a phospholipid to protein weight ratio of 2. The size of the rapidly exchangeable pool of phosphatidylcholine for each of the vesicle systems is consistent with the calculated fraction of phospholipid in the outer monolayer. The extremely slow rate of exchange of the second pool of the second pool of phospholipid reflects the virtual nonexistence of phospholipid flip-flop in any of these model membranes.  相似文献   

5.
—The exchange of phospholipids between liposomes and brain mitochondria has been studied in the presence of pH 5·1 supernatant fluids derived from rat, guinea pig, sheep and ox brains. The exchange phenomenon was similar to that observed in liver and heart, but phosphatidylinositol and not phosphatidylcholine was the most rapidly exchanging phospholipid. The phosphatidylcholine exchange activity was purified 186-fold from sheep brain and the protein fraction contained two major and several minor protein species. The phosphatidylcholine and phosphatidylinositol exchange activities have been shown to have very similar molecular weights and isoelectric points. However, their behaviour in response to changes in liposomal surface charge suggested that separate proteins might be involved in stimulating the exchange of the two phospholipid classes.  相似文献   

6.
Purified phosphatidylcholine exchange protein from bovine liver was used to exchange [14C]dipalmitoyl phosphatidylcholine from sonicated vesicles to human plasma very low density lipoproteins (VLDL). The exchange of [14C]-dipalmitoyl phosphatidylcholine for VLDL phospholipids was temperature dependent and linear with respect to time and amount of exchange protein. In the absence of the exchange protein, less than 10% of the [14C]dipalmitoyl phosphatidylcholine was transferred. At an initial weight ratio of [14C]-dipalmitoyl phosphatidylcholine vesicles to VLDL phospholipid (1.2 mg) of 2.2, the exchange protein (14 microgram) replaced 55% of the VLDL phospholipids with [14C]dipalmitoyl phosphatidylcholine in 15 min; VLDL protein and cholesterol content were unaltered. From these studies we conclude that the exchange protein is a useful method to alter the phospholipid composition of VLDL under conditions such that there is minimal perturbation of the lipoprotein.  相似文献   

7.
Small unilamellar phosphatidylcholine vesicles, formed by solubilizing phosphatidylcholine with sodium cholate and removing the detergent by gel filtration, have been studied in their interaction with phospholipid exchange protein. The exchange of phosphatidylcholine between the vesicles and erythrocyte ghosts was greatly stimulated by the phosphatidylcholine-specific exchange protein from bovine liver. It was found that 95% of the phosphatidylcholine was readily available for exchange within 3 h at 37°C. In similar vesicles prepared by sonication only 70% of the phosphatidylcholine was rapidly exchangeable. Our results indicate that the transmembrane movement of phosphatidylcholine across the bilayer of vesicles prepared by the cholate technique is a relatively fast process. The results are discussed with respect to the presence of trace amounts of lipid-associated cholate which may facilitate the transbilayer exchange of phosphatidylcholine.  相似文献   

8.
B Bloj  D B Zilversmit 《Biochemistry》1976,15(6):1277-1283
Purified phospholipid exchange protein from beef heart cytosol is used to accelerate the exchange of phospholipids between labeled sealed ghosts and phosphatidylcholine/cholesterol liposomes. The purified protein accelerates the transfer of phosphatidylcholine and, to a lesser degree, that of sphingomyelin, phosphatidylinositol, and lysophosphatidylcholine. The presence of exchange protein does not accelerate the exchange of phospholipids between intact red blood cells and liposomes, but 75% of the phosphatidylcholine of sealed ghosts is readily available for exchange. The remaining 25% is also exchangeable but at a slower rate. When the exchange is assayed between inside-out vesicles and liposomes, 37% of the phosphatidylcholine is readily available, and 63% is exchanged at a slower rate. These results are consistent with an asymmetric distribution of phosphatidylcholine in isolated erythrocyte membrane fractions. The sum of the forward and backward transposition of phosphatidylcholine between the inside and outside layers of sealed ghost membranes amounts to 11% per hour, and the half-time for equilibration is 2.3 h. Significatnly lower values are obtained for the inside-out vesicles (half-time for equilibration: 5.3 h). These results suggest that, during the formation of the vesicles, the asymmetry of phosphatidylcholine is partially preserved, but structural changes occur in the membrane that affect the rate of membrane transposition of phosphatidylcholine.  相似文献   

9.
Lipid-protein interactions in reconstituted band 3 preparations were investigated by using spin-labeled lipids in conjunction with electron paramagnetic resonance (EPR) spectroscopy. Purified erythrocyte band 3 was reconstituted into egg phosphatidylcholine liposomes at high protein density with preservation predominantly of the dimeric state. Lipid-protein associations were revealed by the presence of a component in the EPR spectra that, when compared to spectra obtained from protein-free bilayers, indicated that lipid chain motions are restricted by interactions with the protein. From the fraction of the motionally restricted component obtained from the phosphatidylcholine spin-label, a value of 64 +/- 14 annular lipids per band 3 dimer was obtained. This agrees with a value of 62 for the number of lipids that may be accommodated around the electron density map of a band 3 dimer. Selectivity of various spin-labeled lipids for the protein revealed that androstanol had a lower affinity for the band 3 interface, whereas a distinct preference was observed for the negatively charged lipids phosphatidylglycerol and stearic acid over phosphatidylcholine. This preference for negatively charged lipids could not be screened by 1-M salt, indicating that electrostatic lipid-protein interactions are not dominant. Estimates of annular lipid exchange rates from measured acyl chain segmental motions suggested that the rate of exchange between bilayer and boundary lipids was approximately 10(6) s(-1), at least an order of magnitude slower than the rate of lipid lateral diffusion in protein-free bilayers.  相似文献   

10.
Abstract— When exchange between liposomal phosphatidylcholine and that in a whole myelin fraction from guinea-pig brain was studied, very little exchange was observed. In order to investigate the reason for this phenomenon, myelin lipids in the Ca2+ form were prepared and subjected to sonication under the same conditions usually used to study phosphatidylcholine exchange. Despite the high cholesterol content in these extracts, this treatment produced liposomes of a size (12 nm Stoke's radius) similar to that of pure phosphatidylcholine liposomes. In this form, myelin total lipids were capable of undergoing exchange, and this was only demonstrable in the fraction containing phosphatidylcholine and that containing phosphatidylinositol. Since the level of acidic phospholipids in these total lipid extracts is potentially capable of producing 40% inhibition of phosphatidylcholine exchange (H ellings et al , 1974; B rammer & S heltawy , 1975), control experiments were carried out to ensure that the observed phosphatidylcholine exchange in the myelin lipid extract was not due to the loss of phosphoinositides. This was found to be the case, and it was concluded therefore that total myelin lipids, in the Ca2+ form, are capable of phosphatidylcholine exchange and that the observed lack of it in the whole myelin is due either to the effect of myelin proteins or the compact structure of the myelin membrane.
Calculations based on the difference between the rate of phosphatidylcholine exchange in the myelin liposomes and in the sonicated phosphatidylcholine liposomes indicated that the phosphatidylcholine is asymmetrically distributed in the myelin liposomes. Almost all the phosphatidylcholine seems to be present in the outer half of the bilayer.  相似文献   

11.
The exchange of phosphatidylcholine and unesterified cholesterol between rat mesenteric lymph chylomicrons and human high-density lipoproteins was studied in vitro by incubation of radiolabelled chylomicrons (with [N-methyl-14C]phosphatidylcholine and [7(n)-3H]cholesterol) with unlabelled high-density lipoproteins. The kinetic analysis was based on the extent of radioisotope exchange, which was determined by the proportion of label appearing in the high-density lipoprotein elution peak after rapid fractionation on analytical agarose columns. Under our experimental conditions, no net transfer of either phosphatidylcholine or cholesterol is observed. The kinetics of exchange of both phosphatidylcholine and cholesterol are biphasic. Over the first 30 min a maximum of 25% of the phosphatidylcholine and 33% of the cholesterol in chylomicrons exchanges rapidly into the high-density-lipoprotein fraction. Thereafter both lipids continue to exchange for up to 3 h at a much lower rate. For the rapid exchange process the calculated exchange rates for phosphatidylcholine and cholesterol are proportional to the concentrations of both chylomicrons and high-density lipoproteins. The second-order rate constants are (10.5 +/- 0.5) X 10(-5) microM-1 X min-1 for phosphatidylcholine and (32.1 +/- 4.5) X 10(-5) microM-1 X min-1 for cholesterol. The kinetics of the exchange process thus suggest that a significant proportion of both phosphatidylcholine and unesterified cholesterol is rapidly exchangeable between these lipoproteins, and that this exchange is mediated by a 'bimolecular', or collisional, mechanism.  相似文献   

12.
The intestinal brush-border membrane contains one or several membrane proteins that mediate fusion and/or aggregation of small unilamellar egg phosphatidylcholine vesicles. The fusion is accompanied by a partial loss of vesicle contents. Proteolytic treatment of the brush-border membrane with proteinase K abolishes the fusogenic property. This finding suggests that the fusogenic activity is associated with a membrane protein exposed on the external or luminal side of the brush-border membrane. Activation of intrinsic proteinases of the brush-border membrane liberates water-soluble proteins (supernate proteins). These proteins behave in an analogous way to intact brush-border membrane vesicles; they induce fusion of egg phosphatidylcholine vesicles and render the egg phosphatidylcholine bilayer permeable to ions and small molecules (Mr less than or equal to 5000). Furthermore, supernate proteins mediate phosphatidylcholine and cholesterol exchange between two populations of small, unilamellar phospholipid vesicles. Supernate proteins are fractionated on Sephadex G-75 SF yielding three protein peaks of apparent Mr greater than or equal to 70,000, Mr = 22,000 and Mr = 11,500. All three protein fractions show similar phosphatidylcholine-exchange activity, but they differ in their effects on the stability of egg phosphatidylcholine vesicles. The protein fraction with an apparent Mr greater than or equal to 70,000 has the highest fusogenic activity while the protein fraction of apparent Mr = 11,500 appears to be most effective in rendering the egg phosphatidylcholine bilayer permeable.  相似文献   

13.
A phospholipid serine base exchange enzyme   总被引:5,自引:0,他引:5  
A membrane bound L-serine exchange enzyme which catalyzes the exchange reaction between L-serine and phospholipid-base was solubilized and separated from the ethanolamine-exchange enzyme by Sepharose 4B and DEAE-cellulose column chromatography. The separated fraction was purified approximately 37-fold with a yield of 2--5%. This fraction did not possess ethanolamine or choline exchange activity. The optimal pH was approx. 8.0, the incorporation rate of L-serine into phospholipid was linear up to 20 min incubation time and the activity was maximum at 10 mM CaCl2. The calculated Km value for L-serine was 0.4 mM. Ethanolamine phospholipid was the most effective acceptor for L-serine incorporation, particularly ethanolamine plasmalogen. The Km values obtained were: 0.25 mM for ethanolamine plasmalogen, 0.25mM for pig liver phosphatidylethanolamine and 0.66 mM for egg yolk phosphatidylethanolamine. These observations suggest that the hydrophobic moiety in ethanolamine phospholipid, as well as the base moiety, is important for the affinity of the L-serine exchange enzyme. Neither ethanolamine nor choline inhibited the L-serine exchange activity. There was no detectable conversion of phosphatidylcholine or phosphatidylethanolamine to phosphatidic acid by the partially purified enzyme.  相似文献   

14.
Phospholipid transfer activities for phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine were measured in three hepatomas of increasing growth rate and degree of dedifferentiation, the hepatomas of 9633 and 7777, and compared to the activities found in normal and host liver. A 2-3-fold increase was found in the phosphatidylcholine and phosphatidylinositol transfer activities in the fast-growing 7777 hepatoma, while these activities were moderately or not increased in the 7787 and 9633 hepatomas. Phosphatidylethanolamine transfer was found to be extremely low in all three hepatomas. The possible significance of these findings with respect to the altered phospholipid content and composition of the hepatoma membranes is discussed. The contribution of the phosphatidylcholine specific exchange protein to the total phosphatidylcholine transfer activity was determined in normal and host liver and in the hepatomas 7777 and 9633 with the aid o f a phosphatidylcholine exchange protein specific antiserum. To this end a new procedure for the purification of the phosphatidylcholine exchange protein from rat liver was developed which leads to a final purification factor of 5300 and a high overall yield of 17%. In addition, this protein was chemically and immunologically characterized and its properties were compared to those of the bovine phosphatidylcholine exchange protein purified in our laboratory previously.  相似文献   

15.
NMR spectroscopy with the use of non-penetrating paramagnetic probes permits in situ determination of the composition of the outer surface of phospholipid vesicles. The method was employed to follow the phospholipid exchange between phosphatidylinositol and phosphatidylcholine vesicles induced by a postmicrosomal protein fraction from rat liver. The effects of these proteins on the lipid bilayer and the structure of the vesicles produced by exchange were studied.  相似文献   

16.
The microwave saturation properties of various spin-labeled lipids in reconstituted complexes of the myelin proteolipid protein with dimyristoyl phosphatidylcholine have been studied both by conventional and saturation transfer electron spin resonance (ESR) spectroscopy. In the fluid phase, the conventional ESR spectra consist of a fluid and a motionally restricted (i.e., protein-associated) component, whose relative proportions can be determined by spectral subtractions and depend on the selectivity of the particular spin-labeled lipid for the protein. At 4 degrees C when the bulk lipid is in the gel phase, the integrated intensity of the saturation transfer ESR spectra displays a linear dependence on the fraction of motionally restricted lipid that is deduced from the conventional ESR spectra in the fluid phase, indicating the presence of distinct populations of free and protein-interacting lipid with no exchange between them on the saturation transfer ESR time scale in the gel phase. At 30 degrees C when the bulk lipid is in the fluid phase, the saturation transfer integral displays a nonlinear dependence on the fraction of motionally restricted lipid, consistent with exchange between the two lipid populations on the saturation transfer ESR time scale in the fluid phase. For lipid spin labels with different selectivities for the protein in complexes of fixed lipid/protein ratio, the data in the fluid phase are consistent with a constant (diffusion-controlled) on-rate for exchange at the lipid-protein interface. Values ranging between 1 and 9 x 10(6) s-1 are estimated for the intrinsic off-rates for exchange of spin-labeled stearic acid and phosphatidylcholine, respectively, at 30 degrees C. Conventional continuous wave saturation experiments lead to similar conclusions regarding the lipid exchange rates in the fluid and gel phases of the lipid/protein recombinants. The ESR saturation studies therefore demonstrate exchange on the time scale of the nitroxide spin-lattice relaxation at the lipid-protein interface of myelin proteolipid/dimyristoyl phosphatidylcholine complexes in the fluid phase but not in the gel phase.  相似文献   

17.
Vesicles have been prepared from 18 : 1c/18 : 1c-phosphatidylcholine with or without purified glycophorin or partially purified band 3 (obtained by organomercurial gel chromatography). The vesicles have been characterized by freeze-fracture electron microscopy, binding studies to DEAE-cellulose, 31P-NMR and K+ trap measurements. Pools of phosphatidylcholine available for exchange have been investigated using phosphatidylcholine exchange protein from bovine liver. The protein-containing vesicles both exhibit exchangeable pools larger than the fraction of phosphatidylcholine in the outer monolayer, whereas in the protein-free vesicles the exchangeable pool is consistent with the outer monolayer. The results indicate that both glycophorin and the partially purified band 3 preparation enhance the transbilayer movement of phosphatidylcholine.  相似文献   

18.
The phospholipid monolayer technique has been used to study the transfer activity of the phospholipid exchange protein from beef brain. In measuring the transfer between a monolayer consisting of equimolar amounts of phosphatidylcholine and phosphatidylinositol and liposomes consisting of 98 mol% phosphatidylcholine and 2 mol% phosphatidylinositol, the beef brain protein demonstrates an 8-fold higher transfer activity for phosphatidylinositol than for phosphatidylcholine. Under similar conditions the phosphatidylcholine exchange protein from beef liver showed a great preference for phosphatidylcholine. Phosphatidylcholine liposomes devoid of phosphatidylinositol still functioned as receptors of phosphatidylinositol when the beef brain exchange protein was present. This indicates that this protein can catalyse a net transfer of phosphatidylinopsitol. Binding of both phosphatidylinositol and phosphatidylcholine to the beef brain protein was shown.  相似文献   

19.
Purified phosphatidylcholine exchange protein from bovine liver was used to exchange rat liver microsomal phosphatidylcholine for egg phosphatidylcholine. It was found that at 25 and 37°C rat liver microsomal phosphatidylcholine was completely and rapidly available for replacement by egg phosphatidylcholine. In contrast, phosphatidylcholine in vesicles prepared from total microsomal lipids could only be exchanged for about 60%. At 8 and 0°C complex exchange kinetics were observed for phosphatidylcholine in rat liver microsomes. The exchange process had neither effect on the permeability of the microsomal membrane to mannose 6-phosphate, nor on the permeability of the phosphatidylcholine vesicles to neodymium (III) cations.Purified phospholipase A2 from Naja naja could hydrolyze some 55–60% of microsomal phosphatidylcholine at 0°C, but 70–80% at 37°C. Microsomal phosphatidylcholine, remaining after phospholipase treatment at 37°C, could be exchanged for egg phosphatidylcholine at 37°C, but at a slower rate than with intact microsomes. Microsomal phosphatidylcholine remaining after phospholipase treatment at 0 and 37°C had a lower content of arachidonic acid than the original phosphatidylcholine.These results are discussed with respect to the localization and transmembrane movement of phosphatidylcholine in liver microsomes.  相似文献   

20.
ESR spectrometry has been used to study fatty acid spin-labeled phosphatidylcholine exchange from single bilayer donor vesicles to various acceptor systems, such as intact or differently treated mitochondria, phospholipid multilamellar vesicles or single bilayer vesicles. This exchange is catalyzed by soluble non-specific rat liver protein, first investigated by Bloj and Zilversmit in 1977 (J. Biol. Chem. 252, 1613--1619). Non-catalyzed phosphatidylcholine exchange has also been studied. Full inhibition of both mechanisms occurs with lipid-depleted acceptor mitochondria, while N-ethylmaleimide-treated mitochondria behave as good acceptors during catalyzed exchange but are in no way effective during spontaneous exchange. Non-catalyzed exchange does not take place with phospholipase D-treated mitochondria as acceptors, while the pure catalyzed mechanism is inhibited by 28%. Neither multilamellar nor single bilayer phospholipid vesicles exchange spin-labeled phosphatidylcholine in the absence of protein, the former being a poorer acceptor system than the latter during catalyzed exchange, when this activity is 31 and 80%, respectively, of that of intact mitochondria. The hypothesis is made that the spontaneous mechanism is active among intact natural membranes and could be of some importance in vivo. Furthermore, the biomembrane protein moiety is assumed to be involved in the catalyzed exchange more as a phospholipid spacer than as a binder between the exchange protein and the membrane involved. Phospholipids, on the contrary, appear to be important for both functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号