首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increase in passive permeability of bilayer membranes near the phase transition temperature is usually explained as caused by either the increase in the amount of ‘boundary lipid’ present in the membrane, or by the increase in lateral compressibility of the membrane. Since both the amount of ‘boundary lipid’ and the lateral compressibility show a similar anomaly near the transition temperature, it is difficult to distinguish experimentally between the two proposed mechanisms.We have examined some details of both of the proposed pictures. The fluid-solid boundary energy, neglected in previous work, has been computed as a function of the domain size. For a single component uncharged lipid bilayer, the results rule out the existence of even loosely defined solid domains in a fluid phase, or vice versa. Thermodynamic fluctuations, which are responsible for anomalous behaviour near the phase transition temperature, are not intense enough to approximate the formation of a domain of the opposite phase.Turning next to lateral compressibility of bilayer membranes we have considered two-component mixtures in the phase separation region. We present the first calculation of lateral compressibility for such systems. The behaviour shows interesting anomalies, which should correlate with existing and future data on transport across membranes.  相似文献   

2.
We have examined the phase diagram of dipalmitoylphosphatidylcholine (DPPC)--cholesterol-water mixtures at low cholesterol content, and report phase separation between 3 and 10 mol% cholesterol. The two lamellar phases at equilibrium in this region appear to be pure DPPC and 11 mol% cholesterol in DPPC. For these two lamellar phases, which are made up of alternating layers of water and bimolecular lipid leaflets, we have measured the forces of interaction between leaflets and the lateral pressure and compressibility of the leaflets. Both bilayers experience a strong repulsive force when forced together only a few ?ngstr?ms (1 A = 0.1 nm) closer than their maximum separation in excess water. However, the presence of 11 mol% cholesterol causes the bilayers to move apart of 35-A separation from the 19-A characteristic of pure DPPC in excess water. This swelling may result from a decrease in van der Waals attraction between bilayers or from an increase in bilayer repulsion. Differences in bilayer interaction can be a cause for phase separation. More importantly these differences can cause changes in the composition of regions of membranes approaching contact. At 11 mol%, cholesterol substantially increases the lateral compressibility of DPPC bilayers leading to higher lateral density fluctuations and potentially higher bilayer permeability.  相似文献   

3.
We explore the effects of alcohols on fluid lipid bilayers using a molecular theory with a coarse-grained model. We show that the trends predicted from the theory in the changes in area per lipid, alcohol concentration in the bilayer, and area compressibility modulus, as a function of alcohol chain length and of the alcohol concentration in the solvent far from the bilayer, follow those found experimentally. We then use the theory to study the effect of added alcohol on the lateral pressure profile across the membrane, and find that added alcohol reduces the surface tensions at both the headgroup/solvent and headgroup/tailgroup interfaces, as well as the lateral pressures in the headgroup and tailgroup regions. These changes in lateral pressures could affect the conformations of membrane proteins, providing a nonspecific mechanism for the biological effects of alcohols on cells.  相似文献   

4.
Ultrasound velocimetry and densitometry methods were used to study the interactions of the Na,K-ATPase with the lipid bilayer in large unilamellar liposomes composed of dioleoyl phosphatidylcholine (DOPC). The ultrasound velocity increased and the specific volume of the phospholipids decreased with increasing concentrations of protein. These experiments allowed us to determine the reduced specific apparent compressibility of the lipid bilayer, which decreased by approx. 11% with increasing concentrations of the Na,K-ATPase up to an ATPase/DOPC molar ratio = 2 × 10??. Assuming that ATPase induces rigidization of the surrounding lipid molecules one can obtain from the compressibility data that 3.7 to 100 times more lipid molecules are affected by the protein in comparison with annular lipids. However, this is in contradiction with the current theories of the phase transitions in lipid bilayers. It is suggested that another physical mechanisms should be involved for explanation of observed effect.  相似文献   

5.
Hydration of polyethylene glycol-grafted liposomes.   总被引:2,自引:0,他引:2       下载免费PDF全文
This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG2000 binds 136 +/- 4 molecules of water. For PEG2000 covalently attached to the lipid molecules organized in micelles, the water binding increases to 210 +/- 6 water molecules. This demonstrates that the two different structural configurations of the PEG2000, a random coil in the case of the free PEG and a brush in the case of DHP-PEG2000 micelles, differ in their hydration level. Ultrasound absorption changes in liposomes reflect mainly the heterophase fluctuations and packing defects in the lipid bilayer. The PEG-induced excess ultrasound absorption of the lipid bilayer at 7.7 MHz for PEG-lipid concentrations over 5 mol % indicates the increase in the relaxation time of the headgroup rotation due to PEG-PEG interactions. The adiabatic compressibility (calculated from ultrasound velocity and density) of the lipid bilayer of the liposome increases monotonically with PEG-lipid concentration up to approximately 7 mol %, reflecting release of water from the lipid headgroup region. Elimination of this water, induced by grafted PEG, leads to a decrease in bilayer defects and enhanced lateral packing of the phospholipid acyl chains. We assume that the dehydration of the lipid headgroup region in conjunction with the increase of the hydration of the outer layer by grafting PEG in brush configuration are responsible for increasing thermodynamic stability of the liposomes at 5-7 mol % of PEG-lipid. At higher PEG-lipid concentrations, compressibility and partial volume of the lipid phase of the samples decrease. This reflects the increase in hydration of the lipid headgroup region (up to five additional water molecules per lipid molecule for 12 mol % PEG-lipid) and the weakening of the bilayer packing due to the lateral repulsion of PEG chains.  相似文献   

6.
We have modelled a phospholipid bilayer as two monolayer sheets which interact with each other by a coupling which depends upon the states of the lipid hydrocarbon chains in each sheet. We make use of a model (Georgallas and Pink 1982a) and its parameters, already used to study monolayer phase changes at the LC-LE transition, in order to study the lipid main transition. Although the monolayer coexistence curve can be calculated exactly, we have made use of high-temperature series expansions to calculate the critical point of the bilayer. We also present the results of computer simulations on triangular lattices for the pressure-area isotherms. We find: (i) the interaction between the sheets of a DPPC bilayer is about 1.5–2% of the maximum interaction within the plane of each sheet; (ii) the internal lateral pressure of a DPPC bilayer is about 30.5 dyne/cm; (iii) the bilayer transition enthalpy depends sensitively upon the coupling between the sheets. Should this coupling vary from sample to sample (due, possibly, to its preparation) then very different values of transition enthalpy may be measured. (iv) We present a rough rule-of-thumb for estimating the internal lateral pressure of a bilayer from a knowledge of the corresponding monolayer pressure-area isotherms.Abbreviations LC-LE liquid condensed — liquid expanded - DPPC dipalmitoylphosphatidylcholine - Q transition enthalpy Work supported in part by the Natural Sciences and Engineering Research Council of Canada  相似文献   

7.
Structure of Sphingomyelin Bilayers: A Simulation Study   总被引:3,自引:1,他引:2       下载免费PDF全文
We have carried out a molecular dynamics simulation of a hydrated 18:0 sphingomyelin lipid bilayer. The bilayer contained 1600 sphingomyelin (SM) molecules, and 50,592 water molecules. After construction and initial equilibration, the simulation was run for 3.8 ns at a constant temperature of 50°C and a constant pressure of 1 atm. We present properties of the bilayer calculated from the simulation, and compare with experimental data and with properties of dipalmitoyl phosphatidylcholine (DPPC) bilayers. The SM bilayers are significantly more ordered and compact than DPPC bilayers at the same temperature. SM bilayers also exhibit significant intramolecular hydrogen bonding between phosphate ester oxygen and hydroxyl hydrogen atoms. This results in a decreased hydration in the polar region of the SM bilayer compared with DPPC. Since our simulation system is very large we have calculated the power spectrum of bilayer undulation and peristaltic modes, and we compare these data with similar calculations for DPPC bilayers. We find that the SM bilayer has significantly larger bending modulus and area compressibility compared to DPPC.  相似文献   

8.
We applied precise densimetry and ultrasound velocimetry methods to study the interaction of a synthetic alpha-helical transmembrane peptide, acetyl-K(2)-L(24)-K(2)-amide (L(24)), with model bilayer lipid membranes. The large unilamellar vesicles (LUVs) utilized were composed of a homologous series of n-saturated diacylphosphatidylcholines (PCs). PCs whose hydrocarbon chains contained from 13 to 16 carbon atoms, thus producing phospholipid bilayers of different thicknesses and gel to liquid-crystalline phase transition temperatures. This allowed us to analyze how the difference between the hydrophobic length of the peptide and the hydrophobic thickness of the lipid bilayer influences the thermodynamical and mechanical properties of the membranes. We showed that the incorporation of L(24) decreases the temperature and cooperativity of the main phase transition of all LUVs studied. The presence of L(24) in the bilayer also caused an increase of the specific volume and of the volume compressibility in the gel state bilayers. In the liquid crystalline state, the peptide decreases the specific volume at relatively higher peptide concentration (mole ratio L(24):PC=1:50). The overall volume compressibility of the peptide-containing lipid bilayers in the liquid-crystalline state was in general higher in comparison with pure membranes. There was, however, a tendency for the volume compressibility of these lipid bilayers to decrease with higher peptide content in comparison with bilayers of lower peptide concentration. For one lipid composition, we also compared the thermodynamical and mechanical properties of LUVs and large multilamellar vesicles (MLVs) with and without L(24). As expected, a higher cooperativity of the changes of the thermodynamical and mechanical parameters took place for MLVs in comparison with LUVs. These results are in agreement with previously reported DSC and (2)H NMR spectroscopy study of the interaction of the L(24) and structurally related peptides with phosphatidylcholine bilayers. An apparent discrepancy between (2)H NMR spectroscopy and compressibility data in the liquid crystalline state may be connected with the complex and anisotropic nature of macroscopic mechanical properties of the membranes. The observed changes in membrane mechanical properties induced by the presence of L(24) suggest that around each peptide a distorted region exists that involves at least 2 layers of lipid molecules.  相似文献   

9.
We employ 100-ns molecular dynamics simulations to study the influence of cholesterol on structural and dynamic properties of dipalmitoylphosphatidylcholine bilayers in the fluid phase. The effects of the cholesterol content on the bilayer structure are considered by varying the cholesterol concentration between 0 and 50%. We concentrate on the free area in the membrane and investigate quantities that are likely to be affected by changes in the free area and free volume properties. It is found that cholesterol has a strong impact on the free area properties of the bilayer. The changes in the amount of free area are shown to be intimately related to alterations in molecular packing, ordering of phospholipid tails, and behavior of compressibility moduli. Also the behavior of the lateral diffusion of both dipalmitoylphosphatidylcholine and cholesterol molecules with an increasing amount of cholesterol can in part be understood in terms of free area. Summarizing, our results highlight the central role of free area in comprehending the structural and dynamic properties of membranes containing cholesterol.  相似文献   

10.
The intramolecular dynamics of the excimer-forming dipyrenyl lipids (DipynPE) of different chain lengths (n) in fully hydrated dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) binary mixtures was investigated by the use of frequency-domain fluorescence intensity dcay technique. Using a 3-state model (see companion paper), the extent of aggregation and rotational rate of the two covalently attached pyrene moieties in DipynPE were estimated from the frequency-domain data. At 1 degrees C, the rotational rate and aggregation for Dipy4PE and Dipy10PE were insensitive to DOPE% of the lipid bilayer. At 27 degrees C, the rotational rate decreased, whereas the aggregation increased steadily for Dipy10PE as the DOPE% of the bilayer increased from 0 to 80. However, an abrupt increase in the rotational rate and a decrease in the aggregation for Dipy10PE were detected as the DOPE% reached 100, at which point the membranes are in the inverted hexagonal (HII) phase. No similar changes were found for Dipy4PE. These results indicate that the presence of PE with large intrinsic-curvature increases the lateral stress at the region near the center of the bilayer, and that this stress can be relieved as the membranes enter the highly curved HII phase.  相似文献   

11.
We discuss the thermodynamic behavior of a bilayer composed of two coupled leaves and derive the Gibbs Phase Rule for such a system. A simple phenomenological model of such a system is considered in which the state of the bilayer is specified by the relative number of ordering lipids in the outer leaf, and in the inner leaf. Two cases are treated. In the first, both inner and outer leaves could undergo phase separation when uncoupled from one another. The bilayer can exist in four different phases, and can exhibit three-phase coexistence. In the second case, an outer layer which can undergo phase separation by itself is coupled to an inner leaf which cannot. We find that when the coupling is weak, the bilayer can exist in only two phases, one in which the outer layer is rich in ordering lipids and the inner leaf is somewhat richer in them than when uncoupled, and another in which the outer layer is poor in ordering lipids and the inner leaf is poorer in them than when uncoupled. Increasing the coupling increases the effect on the inner leaf composition due to small changes in those of the outer leaf. For sufficiently large coupling, a phase transition occurs and the bilayer exhibits four phases as in the first case considered. Our results are in accord with several observations made recently.  相似文献   

12.
The elastic area compressibility modulus, Ka, of lamellar liquid crystalline bilayers was determined by a new experimental approach using 2H-NMR order parameters of lipid hydrocarbon chains together with lamellar repeat spacings measured by x-ray diffraction. The combination of NMR and x-ray techniques yields accurate determination of lateral area per lipid molecule. Samples of saturated, monounsaturated, and polyunsaturated phospholipids were equilibrated with polyethylene glycol (PEG) 20,000 solutions in water at concentrations from 0 to 55 wt % PEG at 30 degrees C. This procedure is equivalent to applying 0 to 8 dyn/cm lateral pressure to the bilayers. The resulting reductions in area per lipid were measured with a resolution of +/-0.2 A2 and the fractional area decrease was proportional to applied lateral pressure. For 1,2-dimyristoyl(d54)-sn-glycero-3-phosphocholine, 1-stearoyl(d35)-2-oleoyl-sn-glycero-3-phosphocholine (SOPC-d35), and 1-stearoyl(d35)-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC-d35) cross-sectional areas per molecule in excess water of 59.5, 61.4, and 69.2 A2 and bilayer elastic area compressibility moduli of 141, 221, and 121 dyn/cm were determined, respectively. Combining NMR and x-ray results enables the determination of compressibility differences between saturated and unsaturated hydrocarbon chains. In mixed-chain SOPC-d35 both chains have similar compressibility moduli; however, in mixed-chain polyunsaturated SDPC-d35, the saturated stearic acid chain appears to be far less compressible than the polyunsaturated docosahexaenoic acid chain.  相似文献   

13.
We have measured the microscopic isothermal compressibility of dioleoyl- and dimyristyl-phosphatidylcholine multilayers and bilayers as a function of membrane depth by the pressure dependence of the polarization of a series of anthroyloxy fatty acids. In both systems, within experimental error, the compressibility did not change with membrane depth. The magnitudes of the compressibilities matched those of organic solids and those reported for dipalmitoylphosphatidylcholine multilayers from neutron diffraction measurements (Braganza, L. F., and D. L. Worcester. 1986. Biochemistry, 25:7484-7488). The bilayer compressibility decreased with temperature and this decrease was similar with membrane depth consistent with the isotropic thermal expansion of membranes previously observed (Scarlata, S. 1989. Biophys. J. 55:1215-1223). The vertical compressibility in the z direction is much lower than the horizontal (xy planes) for probes that lie parallel to the hydrocarbon chains which is consistent with an increase in bilayer thickness. The compressibility for probes that lie perpendicular to the hydrocarbon chains is more isotropic due to their limited spatial access to the z plane.  相似文献   

14.
The one previously reported high pressure volumetric experiment on a phospholipid bilayer investigated a region of pressure between 0 and 25 MPa and obtained isothermal compressibility values for the liquid crystal and intermediate phases which differed by more than a factor of ten. We report new volumetric measurements around the main transition in dipalmitoylphosphatidylcholine (DPPC) from 0 to 100 MPa. The isothermal compressibility data for the two phases are of the same order of magnitude, and the experimentally determined coexistence curve, specific volume dependence, and volume discontinuity values are compared with the predictions of the phenomenological theory according to Sugar and Tarjan ((1982) Sov. Phys. Crystallogr. 27, 4-5). Significant discrepancies between this theory and experiment are found. Finally, the data indicate that steric interactions play a more dominant role in the main transition of phospholipid bilayers than in transitions in most thermotropic liquid crystals.  相似文献   

15.
We determined changes in the volume and adiabatic compressibility of large multi- and unilamellar vesicles composed of dimyristoylphosphatidylcholine containing various concentrations of the antimicrobial peptide gramicidin S (GS) by applying densitometry and sound velocimetry. Gramicidin S incorporation was found to progressively decrease the phase transition temperature of DMPC vesicles as well as to decrease the degree of cooperativity of the main phase transition and to increase the volume compressibility of the vesicles. GS probably enhanced thermal fluctuations at the region of main phase transition and provide more freedom of rotational movement for the phospholipid hydrocarbon chains. The ability of GS to increase the membrane compressibility and to decrease the phase transition temperature is evidence for regions of distorted membrane structure around incorporated gramicidin S molecules. At relatively high GS concentration (10 mol%), more significant changes of specific volume and compressibility appear. This might suggest changes in the integrity of the lipid bilayer upon interaction with high concentrations of GS.  相似文献   

16.
A L MacDonald  D A Pink 《Biochemistry》1987,26(7):1909-1917
We have developed a model of glycophorin in a phospholipid bilayer membrane in order to study the thermodynamics of this system and to understand the detailed behavior of recent calorimetric data. We assume that the larger glycophorin polar group can be considered as either adopting a pancakelike conformation at the bilayer interface (D state) or be directed generally away from the interface (U state) [Ruppel, D., Kapitza, H.G., Galla, H.J., Sixl, F., & Sackmann, E. (1982) Biochim. Biophys. Acta 692, 1-17]. Lipid hydrocarbon chains are described either as excited (e state) with high energy and relatively many gauche conformers or as generally extended (g state) with low energy. We performed a Monte-Carlo simulation using the Glauber and Kawasaki procedures on a triangular lattice which represents the plane of half of the bilayer. Lattice sites can be occupied either by lipid hydrocarbon chains or by model glycophorin alpha-helical hydrophobic cores. The states D and U are represented by hexagons of different sizes in the plane of the lattice, and the hard core repulsion between two such polar groups is accounted for by forbidding hexagon-hexagon overlap. We have studied the effect of having the glycophorin polar group interact in various ways with the lipid bilayer. We find that the protein polar group in its D state interacts, either directly or indirectly, with the lipid bilayer so as to reduce the effective lateral pressure acting on the lipid hydrocarbon chains by about 3 dyn/cm. Polar groups in their U states do not reduce this lateral pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have extended the Gouy-Chapman theory of the electrostatic diffuse double layer by considering the finite size of divalent cations in the aqueous phase adjacent to a charged surface. The divalent cations are modeled as either two point charges connected by an infinitely thin, rigid "rod" or two noninteracting point charges connected by an infinitely thin, flexible "string." We use the extended theory to predict the effects of a cation of length 10 A (1 nm) on the zeta and surface potentials of phospholipid bilayer membranes. The predictions of the rod and string models are similar to one another but differ markedly from the predictions of the Gouy-Chapman theory. Specifically, the extended model predicts that a large divalent cation will have a smaller effect on the potential adjacent to a negatively charged bilayer membrane than a point divalent cation, that the magnitude of this discrepancy will decrease as the Debye length increases, and that a large divalent cation will produce a negative zeta potential on a membrane formed from zwitterionic lipids. These predictions agree qualitatively with the experimental results obtained with the large divalent cation hexamethonium. We discuss the biological relevance of our calculations in the context of the interaction of cationic drugs with receptor sites on cell membranes.  相似文献   

18.
Giant bilayer vesicles were reconstituted from several lipids and lipid/cholesterol (CHOL) mixtures: stearolyloleoylphosphatidylcholine (SOPC), bovine sphingomyelin (BSM), diarachidonylphosphatidylcholine (DAPC), SOPC/CHOL, BSM/CHOL, DAPC/CHOL, and extracted red blood cell (RBC) lipids with native cholesterol. Single-walled vesicles were manipulated by micropipette suction and several membrane material properties were determined. The properties measured were the elastic area compressibility modulus K, the critical areal strain alpha c, and the tensile strength tau lys, from which the failure energy or membrane toughness Tf was calculated. The elastic area expansion moduli for these lipid and lipid/cholesterol bilayers ranged from 57 dyn/cm for DAPC to 1,734 dyn/cm for BSM/CHOL. The SOPC/CHOL series and RBC lipids had intermediate values. The results indicated that the presence of cholesterol is the single most influential factor in increasing bilayer cohesion, but only for lipids where both chains are saturated, or mono- or diunsaturated. Multiple unsaturation in both lipid chains inhibits the condensing effect of cholesterol in bilayers. The SOPC/CHOL system was studied in more detail. The area expansion modulus showed a nonlinear increase with increasing cholesterol concentration up to a constant plateau, indicating a saturation limit for cholesterol in the bilayer phase of approximately 55 mol% CHOL. The membrane compressibility was modeled by a property-averaging composite theory involving two bilayer components, namely, uncomplexed lipid and a lipid/cholesterol complex of stoichiometry 1/1.22. The area expansion modulus of this molecular composite membrane was evaluated by a combination of the expansion moduli of each component scaled by their area fractions in the bilayer. Bilayer toughness, which is the energy stored in the bilayer at failure, showed a maximum value at approximately 40 mol% CHOL. This breakdown energy was found to be only a fraction of the available thermal energy, implying that many molecules (approximately 50-100) may be involved in forming the defect structure that leads to failure. The area expansion modulus of extracted RBC lipids with native cholesterol was compared with recent measurements of intact RBC membrane compressibility. The natural membrane was also modeled as a simple composite made up to a compressible lipid/cholesterol matrix containing relatively incompressible transmembrane proteins. It appears that the interaction of incompressible proteins with surrounding lipid confers enhanced compressibility on the composite structure.  相似文献   

19.
This review details how bilayer structural/elastic properties impact three distinct areas of biological significance. First, the partitioning of melittin into bilayers and melittin-induced bilayer leakage depended strongly on bilayer composition. The incorporation of cholesterol into phosphatidylcholine bilayers decreased melittin-induced leakage from 73 to 3%, and bilayers composed of lipopolysaccharide (LPS), the main lipid on the surface of Gram-negative bacteria, also had low (3%) melittin-induced leakage. Second, transbilayer peptides of different hydrophobic lengths were largely excluded from bilayer microdomains (“rafts”) enriched in sphingomyelin (SM) and cholesterol, even when the length of the transbilayer peptide domain matched the hydrocarbon thickness of the raft bilayer. This is likely due to the large area compressibility modulus of SM:cholesterol bilayers. Third, the major water barrier of skin, the extracellular lamellae of the stratum corneum, was found to contain tightly packed asymmetric lipid bilayers with cholesterol located preferentially on one side of the bilayer and a unique skin ceramide containing an unsaturated acyl chain on the opposite side. We argue that, in each of these three areas, key factors are differences in lipid hydrocarbon chain packing for different lipids, particularly the tight hydrocarbon chain packing caused by cholesterol’s strong interaction with saturated chains.  相似文献   

20.
We applied precise densimetry and ultrasound velocimetry methods to study the interaction of a synthetic α-helical transmembrane peptide, acetyl-K2-L24-K2-amide (L24), with model bilayer lipid membranes. The large unilamellar vesicles (LUVs) utilized were composed of a homologous series of n-saturated diacylphosphatidylcholines (PCs). PCs whose hydrocarbon chains contained from 13 to 16 carbon atoms, thus producing phospholipid bilayers of different thicknesses and gel to liquid-crystalline phase transition temperatures. This allowed us to analyze how the difference between the hydrophobic length of the peptide and the hydrophobic thickness of the lipid bilayer influences the thermodynamical and mechanical properties of the membranes. We showed that the incorporation of L24 decreases the temperature and cooperativity of the main phase transition of all LUVs studied. The presence of L24 in the bilayer also caused an increase of the specific volume and of the volume compressibility in the gel state bilayers. In the liquid crystalline state, the peptide decreases the specific volume at relatively higher peptide concentration (mole ratio L24:PC = 1:50). The overall volume compressibility of the peptide-containing lipid bilayers in the liquid-crystalline state was in general higher in comparison with pure membranes. There was, however, a tendency for the volume compressibility of these lipid bilayers to decrease with higher peptide content in comparison with bilayers of lower peptide concentration. For one lipid composition, we also compared the thermodynamical and mechanical properties of LUVs and large multilamellar vesicles (MLVs) with and without L24. As expected, a higher cooperativity of the changes of the thermodynamical and mechanical parameters took place for MLVs in comparison with LUVs. These results are in agreement with previously reported DSC and 2H NMR spectroscopy study of the interaction of the L24 and structurally related peptides with phosphatidylcholine bilayers. An apparent discrepancy between 2H NMR spectroscopy and compressibility data in the liquid crystalline state may be connected with the complex and anisotropic nature of macroscopic mechanical properties of the membranes. The observed changes in membrane mechanical properties induced by the presence of L24 suggest that around each peptide a distorted region exists that involves at least 2 layers of lipid molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号