首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 250MHz NMR spectrum of the brain Ca2+-dependent regulator protein was examined in the absence of cations and in the presence of Ca2+ or Mg2+. The Ca2+-saturated regulator protein and Mg2+-saturated regulator protein exhibited several spectral differences in the aromatic and aliphatic regions of their spectra. Certain spectral changes observed to occur upon addition of metal ions are qualitatively similar to those which have been observed in the spectrum of skeletal troponin-C. These results suggest that the large sequence homology between skeletal troponin-C and the regulator protein results in similar conformational changes due to the binding of Ca2+ or Mg2+.  相似文献   

2.
A Ca2+-binding protein (TCBP), which was isolated from Tetrahymena pyriformis, enhanced about 20-fold particulate-bound guanylate cyclase activity in Tetrahymena cells in the presence of a low concentration of Ca2+, while the adenylate cyclase activity was not increased. The enhancement was eliminated by ethylene glycol-bis (β-aminoethyl ether)-N,N′-tetraacetic acid. The enzyme activity was not stimulated by rabbit skeletal muscle troponin-C, the Ca2+-binding component of troponin, or other some proteins. In the presence of TCBP, stimulating effect of calcium ion on the enzyme activity was observed within the range of pCa 6.0 to 4.6, and was immediate and reversible.  相似文献   

3.
Comparative studies have been performed on the binding properties of zinc ions to human brain calmodulin and S100b protein. Calmodulin is characterized by two sets of Zn2+ binding sites, with KD ranging from 8.10?5M to 3.10?4M. The S100b protein also exhibited two sets of zinc binding sites, with a much higher affinity. KD = 10?7 ? 10?6M. We suggest that S100b protein should no longer be considered only as a “calcium binding protein” but also as a “zinc binding protein”, and that Zn2+ ions are involved in the functions of the S100 proteins.  相似文献   

4.
The Ca2+ indicator, arsenazo III, binds to subcellular fractions of rabbit skeletal muscle with sufficient affinity that in living muscle containing 1–2 mM arsenazo III, the estimated free arsenazo III concentration is only 50–200 μM; 80–90% of the bound arsenazo III is associated with soluble proteins.The binding of arsenazo III to soluble proteins decreases the optical response of the dye to Ca2+; this is due to a decrease in the affinity of the protein-bound dye for Ca2+. Approximately half of the bound arsenazo III is released from the particulate fraction and soluble proteins upon addition of 5 mM Ca2+, suggesting that the Ca-arsenazo complex has lower affinity for the protein binding sites than the free dye.The Ca2+ binding to the soluble protein fraction of rabbit skeletal muscle is attributable largely to its parvalbumin content.  相似文献   

5.
The amino acid sequence of bovine cardiac troponin-C has been determined. The protein chain is composed of 161 amino acid residues and its amino terminal is acetylated. There are 55 replacements and 2 additional amino acids when compared with rabbit skeletal troponin-C. Cardiac troponin-C probably contains 3 calcium binding sites, one less than rabbit skeletal troponin-C. The difference in amino acid sequence is largely due to the difference in tissue, not to the difference in species.  相似文献   

6.
Cyclic nucleotide phosphodiesterase has been partially purified by calmodulin-Sepharose affinity chromatography from a soluble extract of Neurospora crassa. The phosphodiesterase activity remained bound to the affinity column even in the presence of 6 M urea and could only be eluted by calcium chelation. The enzyme exhibits cAMP and cGMP phosphodiesterase activities. Both activities can be enhanced by calmodulin in a Ca2+-dependent manner. Stimulation of cyclic nucleotide phosphodiesterase by calmodulin can be inhibited by calmodulin antagonists such as pimozide, trifluoperazine and chlorpromazine.  相似文献   

7.
Trifluoperazine (TFP; Stelazine?) is an antagonist of calmodulin (CaM), an essential regulator of calcium‐dependent signal transduction. Reports differ regarding whether, or where, TFP binds to apo CaM. Three crystallographic structures (1CTR, 1A29, and 1LIN) show TFP bound to (Ca2+)4‐CaM in ratios of 1, 2, or 4 TFP per CaM. In all of these, CaM domains adopt the “open” conformation seen in CaM‐kinase complexes having increased calcium affinity. Most reports suggest TFP also increases calcium affinity of CaM. To compare TFP binding to apo CaM and (Ca2+)4‐CaM and explore differential effects on the N‐ and C‐domains of CaM, stoichiometric TFP titrations of CaM were monitored by 15N‐HSQC NMR. Two TFP bound to apo CaM, whereas four bound to (Ca2+)4‐CaM. In both cases, the preferred site was in the C‐domain. During the titrations, biphasic responses for some resonances suggested intersite interactions. TFP‐binding sites in apo CaM appeared distinct from those in (Ca2+)4‐CaM. In equilibrium calcium titrations at defined ratios of TFP:CaM, TFP reduced calcium affinity at most levels tested; this is similar to the effect of many IQ‐motifs on CaM. However, at the highest level tested, TFP raised the calcium affinity of the N‐domain of CaM. A model of conformational switching is proposed to explain how TFP can exert opposing allosteric effects on calcium affinity by binding to different sites in the “closed,” “semi‐open,” and “open” domains of CaM. In physiological processes, apo CaM, as well as (Ca2+)4‐CaM, needs to be considered a potential target of drug action. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
The conformational changes induced by the binding of Ca(II) to rabbit skeletal muscle troponin-C (TNC) have been followed by proton magnetic resonance spectroscopy. Ca(II)-free TNC (apo-TNC) contains definite ordered regions. Ca(II) titration of the high affinity sites (cf. Potter , Gergely, 1975) causes a large folding of the backbone, some of which involves refolding of an ordered region(s) and changes in several side-chains e.g. Glu, Asp and Phe. Titration of the low affinity sites does not alter the backbone but leads to changes among hydrophobic side-chains (one or more Val, Leu, Ile; two or more Phe, Glu and Asp) that define an ordered region(s) of apo-TNC. The rate constants for the conformation changes of the low and high affinity sites are approximately 10 s?1 and < 20 s?1, respectively. Final stages of the titration include a downfield shifted methyl group (likely Ile) and a Phe residue. The thermal stabilities of apo-TNC, TNC · Ca2(II) and native TNC were compared. It was concluded that Ca(II) binding by the two high affinity sites both directs and stabilizes much of the structure. The role of the changes of the low affinity sites, which are thought to activate contraction, are briefly discussed.  相似文献   

9.
(1) Effects of cellular sodium on the 45Ca uptake of isolated guinea-pig diaphragm and atria were studied. (2) Cellular sodium and calcium contents were higher in diaphragm compared to atria after incubating the tissues in normal Krebs-Henseleit solution. (3) Cellular sodium content in atria and diaphragm were reduced signficantly by incubating the tissues in high potassium Krebs-Henseleit solution (K+ = 34.7 mM), while it was increased by incubating the tissues in the ice-cold low potassium and low calcium Krebs-Henseleit solution (K+ = 0.65 mM, Ca2+ = 0.2 mM). Cellular potassium content was changed inversely to the sodium content. (4) In atria, cellular content of calcium was not altered significantly by the above conditions. But in diaphragm, the cellular content of calcium was decreased slightly but significantly after incubation in the ice-cold low potassium and low calcium Krebs-Henseleit solution. (5) At normal cellular sodium levels, the 45Ca uptake of both tissues was similar. (6) The reduction of the cellular sodium content caused a significant decrease in the 45Ca uptake into both tissues. (7) When the cellular sodium content was increased in atrial preparations, a marked increase in the 45Ca uptake was observed. On the other hand, in diaphragm preparations, only a slight increase was observed, even when cellular sodium content was much higher than the normal level. (8) These results indicate that even when the intracellular sodium is increased by some physiological of pharmacological events, calcium influx through Na+/Ca2+ exchange mechanism is very slight and slow in diaphragm.  相似文献   

10.
Troponin C is the Ca2+-binding subunit of the troponin complex and is involved in the calcium control of muscle contraction. The X-ray structure of chicken TnC has been determined at 3Å resolution using a single heavy atom derivative and application of a novel phase improvement and phase extension procedure. The protein has an unusual dumbbell-shape with a length of about 70A. The N- and C-domains are connected by a single long α-helix of about 9 turns. Two metal binding sites (the Ca2+-Mg2+ sites) in the C-domain are occupied by metal ions in the crystals and the helix-loop-helix Ca2+ -binding folds are very similar to those in other known Ca2+ -binding proteins. In contrast, the Ca2+ -specific sites in the N-domain appear unoccupied and the two putative Ca2+ -binding folds have a vastly different structural arrangement. The conformational rearrangements in the N-domain upon Ca2+ binding are believed to be the trigger for a cascade of protein-protein interaction alterations which lead to muscle contraction.  相似文献   

11.
A cytosolic protein fraction, termed CPF-I, derived by (NH4)2 SO4 fractionation of rabbit heart cytosol caused marked inhibition (up to 95%) of ATP-dependent Ca2+ uptake by cardiac sarcoplasmic reticulum. The inhibitory effect of CPF-I was concentration-dependent (50% inhibition with ~ 80–100 μg CPF-I) and heat labile. The inhibitor reduced the velocity of Ca2+ uptake without altering the apparent affinity of the transport system for Ca2+. Concomitant with the inhibition of Ca2+ uptake, Ca2+-sensitive ATP hydrolysis was also inhibited by CPF-I. The inhibitor did not cause release of Ca2+ from Ca2+-preloaded membrane vesicles. The inhibitor activity of CPF-I could be adsorbed to a DEAE cellulose column and could be eluted with a linear gradient of KCl. These results demonstrate the presence of a soluble protein inhibitor of sarcoplasmic reticulum calcium pump in cardiac muscle and raises the intriguing possibility of its participation in the regulation of calcium pump invivo.  相似文献   

12.
The structure of troponin-C2 has been studied by measuring the relative reactivity of lysines with acetic anhydride using a competitive labeling method. Troponin-C was acetylated free and complexed with troponin-I and -T in the native state with [3H]acetic anhydride and combined with [14C]troponin-C that had been acetylated in 6 m-guanidine · HCl. Peptides containing labeled lysines were isolated following chymotryptic and tryptic digestion and identified in the published sequence. The 3H14C ratio of these peptides was used as a measure of relative accessibility of the lysines. Troponin-C contains 9 lysine residues. In free troponin-C Lys20 was the least reactive and Lys153 was the most reactive; the remaining 7 had intermediate reactivities. Lys52 was more reactive in the presence of 10?5m-Ca2+ than in 0.2 mm-EGTA (+2 mm-MgCl2). When troponin-C was labeled in the native troponin complex, Lys20 and 153 were the least and most reactive, respectively. Peptides containing Lys52, (84, 88, 90) and (136, 140) were reduced in reactivity relative to Lys37 and 153, suggesting that these regions are involved in binding to the other troponin components. The reactivities of Lys37 and (136, 140) were influenced by the calcium ion concentration. A similar pattern of reactivities was seen when troponin-C was complexed with troponin-I and complex formation with troponin-T resulted in reduced reactivity of Lys52 and (84, 88, 90). The results are related to structural studies of troponin-C and to the predicted three-dimensional structure based on carp parvalbumin.  相似文献   

13.
The binding of ATP and Ca2+ by the Ca2+ pump protein of sarcoplasmic reticulum from rabbit skeletal muscle has been studied and correlated with the formation of a phoshorylated intermediate. The Ca2+ pump protein has been found to contain one specific ATP and two specific Ca2+ binding sites per phosphorylation site. ATP binding is dependent on Mg2+ and is severely decreased when a phosphorylated intermediate is formed by the addition of Ca2+. In the presence of Mg2+ and the absence of Ca2+, ATP and ADP bind completely to the membrane. Pre-incubation with N-ethylmaleimide results in inhibition of ATP binding and decrease of Ca2+ binding. In the absence of ATP, Ca2+ binding is noncooperative at pH 6–7 and negatively cooperative at pH 8. Mg2+, Sr2+ and La3+, in that order, decrease Ca2+ binding by the Ca2+ pump protein. The affinity of the Ca2+ pump protein for both ATP and Ca2+ increases when the pH is raised from 6 to 8. At the infection point (pH ≈ 7.3) the binding constants of the Ca2+ pump protein-MgATP2? and Ca2+ pump protein-calcium complexes are approx. 0.25 and 0.5 μM?1, respectively. The unphosphorylated Ca2+ pump protein does not contain a Mg2+ binding site with an affinity comparable to those of the ATP and Ca2+ binding sites.The affinity of the Ca2+ pump protein for Ca2+ is not appreciably changed by the addition of ATP. The ratio of phosphorylated intermediate formed to bound Ca2+ is close to 2 over a 5-fold range of phosphoenzyme concentration. The equilibrium constant for phosphoenzyme formation is less than one at saturating levels of Ca2+. The phosphoenzyme is thus a “high-energy” intermediate, whose energy may then be used for the translocation of the two Ca2+.A reaction scheme is discussed showing that phosphorylation of sarcoplasmic reticulum proceeds via an enzyme-Ca22+-MgATP2? complex. This complex is then converted to a phosphoenzyme intermediate which binds two Ca2+ and probably Mg2+.  相似文献   

14.
The specificity of adenosine sites involved in adenylate cyclase inhibition (P sites) is identical on membrane-bound and on solubilized enzyme. Kinetic analysis indicates that in addition to a low affinity Mg2+ site involved in adenylate cyclase stimulation (Km = 10 mM), there is a high affinity Mg2+ site (Km = 2.10?4M) involved together with P sites in a bireactant mechanism for triggering adenylate cyclase inhibition. Guanyl nucleotide-binding protein does not seem to be implicated in this inhibition. We were not able to separate the catalytic component of adenylate cyclase from P sites, either on a sucrose density gradient or in gel filtration experiments. It is suggested that P sites are located on the catalytic component of the enzyme.  相似文献   

15.
The interaction of Mebendazole (methyl-5-benzoyl benzimidazole-2-carbamate), a new antihelminthic drug, with tubulin was studied. Ultramicroscopic and turbidimetric evidence shows an inhibitory effect of Mebendazole on the “in vitro” polymerization of tubulin. Scatchard plot analysis shows a single binding site for Mebendazole per tubulin dimer. This site has an affinity constant of 2.8 × 105 M?1. Competition experiments demonstrate that this binding site is the same as for Colchicine, even when both compounds are not chemically related. Mebendazole is proposed as a useful tool for the study of tubulin assembly.  相似文献   

16.
1. The calcium-dependency of the process of light emission has been investigated for the photoproteins aequorin and obelin.2. The experimental curves of light production, expressed as a percentage of the maximal rate of utilisation, versus pCa are accurately predicted by the cooperative action of at least 2Ca2+ for aequorin and at least 3Ca2+ for obelin.3. At low total monovalent cation concentrations, a pH change from 6.8 to 7.1 shifts the light production vs pCa curve by approx. 0.2 pCa units to the right for aequorin, while that for obelin is shifted by some 0.37 pCa units.4. Other monovalent cations, such as Na+ are able to compete with Ca2+ for the active sites of aequorin and also shift the light production vs pCa curve to the right. There is no apparent change in the calcium stoichiometry for light production under these conditions.5. The same calcium stoichiometry for light emission was also obtained for aequorin or obelin in the presence of either unbuffered Ca2+ solutions or of calcium/EGTA buffers.  相似文献   

17.
At pH 6.4, rat kidney mitochondrial kynurenine aminotransferase activity is enhanced several-fold by the addition of CaCl2, apparently because Ca++ facilitates the translocation of α-ketoglutarate, one of the substrates, across the mitochondrial inner membrane. Chloride salts or Mg++, Mn++, Na+, K+, and NH4+ did not have this effect. At pH 6.8, the enzyme activity was near maximal even without added Ca++ but was strongly depressed by either of two calcium chelating agents, quinolinic acid (Q.A.) and ethyleneglycol-bis(β-aminoethyl ether)N,N′-tetraacetic acid (EGTA). These observations support the view that Ca++ is involved in regulating kidney mitochondrial translocation of α-ketoglutarate and that the reported interference of polycarboxylate anion translocation by Q.A. in vivo depends on the ability of that agent to chelate Ca++.  相似文献   

18.
The effect of calmodulin was determined on activities of two homogeneous liver phosphoprotein phosphatases with phosphorylase a and phosphorylated histones as substrates. Calmodulin in the absence or presence of calcium had no effect on the dephosphorylation of phosphorylase a by either phosphatases. However, calmodulin inhibited the dephosphorylation of histones catalyzed by both phosphatases. No difference was found whether the reactions were carried out in the absence or presence of calcium. The effect of calmodulin on histone dephosphorylation was variable depending on (i) the absence or presence of KCl and Mg2+, and (ii) the concentration of histone in the reaction mixture. In the presence of KCl and Mg2+ at a histone concentration of 0.1 mg/ml, calmodulin inhibited the enzyme activity. At 1 mg/ml histone, lower concentrations of calmodulin activated whereas higher concentrations of calmodulin inhibited the enzyme activity. Similar, but relatively less, effect was observed with troponin-C. In the absence of KCl and Mg2+, calmodulin as well as troponin-C activated the enzyme activity. The optimal concentration of calmodulin (or troponin-C) was approximately 30–50% of histone concentration in the reaction mixture. Calcium alone or with calmodulin (or troponin-C) had no additional effect on enzyme activities. DNA and RNA, two negatively charged nucleic acids, also showed similar effects on histone dephosphorylation. Depending on whether KCl and Mg2+ were absent or present in the reaction mixtures, both nucleic acids either activated or inhibited the dephosphorylation of histones.  相似文献   

19.
20.
Studies of the localization of the Na+-dependent sugar transport in monolayers of LLC PK1 cells show that the uptake of a methyl α-d-glucoside, a nonmetabolizable sugar which shares the glucose-galactose transport system, occurs mainly from the apical side of the monolayer. Kinetics of [3H]phlorizin binding to monolayers of LLC PK1 cells were also measured. These studies demonstrate the presence of two distinct classes of receptor sites. The class comprising high affinity binding sites had a dissociation constant (Kd) of 1.2 μM and a concentration of high affinity receptors of 0.30 μmol binding sites per g DNA. The other class involving low affinity sites had a Kd of 240 μM with the number of binding sites equal to 12 μmol/g DNA. Phlorizin binding at high affinity binding sites is a Na+-dependent process. Binding at the low affinity sites on the contrary is Na+-independent. The mode of action of Na+ on the high affinity binding sites was to increase the dissociation constant without modifying the number of binding sites. The Na+ dependence and the matching of Kd for high affinity binding sites with the Ki of phlorizin for the inhibition of methyl α-d-glucoside strongly suggest that the high affinity phlorizin binding site is, or is part of the methyl α-d-glucoside transport system. Binding studies from either side of the monolayer also show that the binding of phlorizin at the Na+ dependent high affinity binding sites occurs mainly from the apical rather than the basolateral side. The specific location of the Na+-dependent sugar transport system in the apical membrane of LLC PK1 cells is, therefore, another expression of the functional polarization of epithelial cells that is retained under tissue culture condition. In addition, since this sugar transport almost disappears after the cells are brought into suspension, it can be used as a marker to study the development of the apical membrane in this cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号