首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of phospholipid vesicles and divalent cations in the subphase solution on the surface tension of phospholipid monolayer membranes were studied in order to elucidate the nature of the divalent cation-induced vesicle-membrane interaction. The monolayers were formed at the air/water interface. Various concentrations of unilamellar phospholipid (phosphatidylserine, phosphatidylcholine and their mixtures) vesicles and divalent cations (Mg2+, Ca2+, Mn2+, etc.) were introduced into the subphase solution of the monolayers. The changes of surface tension of monolayers were measured by the Wilhelmy plate (Teflon) method with respect to divalent ion concentrations and time.When a monolayer of phosphatidylserine and vesicles of phosphatidylserine/phosphatidylcholine (1 : 1) were used, there were critical concentrations of divalent cations to produce a large reduction in surface tension of the monolayer. These concentrations were 16 mM for Mg2+, 7 mM for Sr2+, 6 mM for Ca2+, 3.5 mM for Ba2+ and 1.8 mM for Mn2+. On the other hand, for a phosphatidylcholine monolayer and phosphatidylcholine vesicles, there was no change in surface tension of the monolayer up to 25 mM of any divalent ion used. When a phosphatidylserine monolayer and phosphatidylcholine vesicles were used, the order of divalent ions to effect the large reduction of surface tension was Mn2+ > Ca2+ > Mg2+ and their critical concentrations were in between the former two cases. The threshold concentrations also depended upon vesicle concentrations as well as the area/molecule of monolayers. For phosphatidylserine monolayers and phosphatidylserine/phosphatidylcholine (1 : 1) vesicles, above the critical concentrations of Mn2+ and Ca2+, the surface tension decreased to a value close to the equilibrium pressure of the monolayers within 0.5 h.This decrease in surface tension of the monolayers is interpreted partly as the consequence of fusion of the vesicles with the monolayer membranes. The  相似文献   

2.
The binding of Ca2+, Mg2+ and Mn2+ to myosins from rabbit skeletal muscle, scallop striated adductor muscle and clam adductor muscle has been investigated. All three myosins bind two moles of divalent metal ion non-specifically and with high affinity (Mn2+ > Ca2+ > Mg2+). In addition, the molluscan myosins bind about a further two moles of Ca2+ specifically. Although rabbit myosin binds some Ca2+ in the presence of an excess of free Mg2+, this binding occurs at the nonspecific sites and should not be taken as evidence for a myosin-linked regulatory system of the type found in molluscan muscles. If such a system exists in vertebrate skeletal muscle, the homologous Ca2+-specific sites must be lost during the early stages of the myosin preparation.The characteristic electron paramagnetic resonance spectrum of the bound Mn2+ was utilized to confirm the homology of the non-specific sites in vertebrate and molluscan myosins. The sites are located on the “regulatory” class of light chain. Mn2+ bound to scallop myosin has a broad electron paramagnetic resonance spectrum, in contrast to the well-resolved spectra that it gives when bound to many other myosin species. This situation was exploited to identify homologous nonspecific, divalent metal-ion sites on the regulatory light chains from a variety of muscle types, including frog skeletal, rabbit cardiac, chicken gizzard and molluscan adductor muscles. When these light chains are combined with desensitized scallop myofibrils the electron paramagnetic resonance spectra of Mn2+ bound to the resultant hybrids are dominated by the signal from the non-specific site of the foreign regulatory light chain.  相似文献   

3.
Ca2+ and Mn2+ promote the binding of the basic isoperoxidase to a crude membrane preparation in extracts from Pharbitis cotyledons. The Ca2+- or Mn2+-induced binding is resistant to high ionic strength and can be saturated by increasing the divalent ion or the isoperoxidase concentrations. Treatments in vitro with glucosaminidase or in vivo with tunicamycin show that the carbohydrate part of the isoperoxidase is necessary for the binding. The amino sugar galactosamine inhibits the binding at rather high concentrations. Pharbitis basic isoperoxidase can be bound to zucchini squash microsomes in the presence of Ca2+ and conversely.  相似文献   

4.
31P-nmr has been used to investigate the specific interaction of three divalent metal ions, Mg2+, Mn2+, and Co+2, with the phosphate groups of DNA. Mg2+ is found to have no significant effect on any of the 31P-nmr parameters (chemical shift, line-width, T1, T2, and NOE) over a concentration range extending from 20 to 160 mM. The two paramagnetic ions, Mn2+ and Co2+, on the other hand, significantly change the 31P relaxation rates even at very low levels. From an analysis of the paramagnetic contributions to the spin–lattice and spin–spin relaxation rates, the effective internuclear metal–phosphorus distances are found to be 4.5 ± 0.5 and 4.1 ± 0.5 Å for Mn2+ and Co2+, respectively, corresponding to only 15 ± 5% of the total bound Mn2+ and Co2+ being directly coordinated to the phosphate groups (inner-sphere complexes). This result is independent of any assumptions regarding the location of the remaining metal ions which may be bound either as outer-sphere complexes relative to the phosphate groups or elsewhere on the DNA, possibly to the bases. Studies of the temperature effects on the 31P relaxation rates of DNA in the absence and presence of Mn2+ and Co2+ yielded kinetic and thermodynamic parameters which characterize the association and dissociation of the metal ions from the phosphate groups. A two-step model was used in the analysis of the kinetic data. The lifetimes of the inner-sphere complexes are 3 × 10?7 and 1.4 × 10?5 s for Mn2+ and Co2+, respectively. The rates of formation of the inner-sphere complexes with the phosphate are found to be about two orders of magnitude slower than the rate of the exchange of the water of hydration of the metal ions, suggesting that expulsion of water is not the rate-determining step in the formation of the inner-sphere complexes. Competition experiments demonstrate that the binding of Mg2+ ions is 3–4 times weaker than the binding of either Mn2+ or Co2+. Since the contribution from direct phosphate coordination to the total binding strength of these metal ion complexes is small (~15%), the higher binding strength of Mn2+ and Co2+ may be attributed either to base binding or to formation of stronger outer-sphere metal–phosphate complexes. At high levels of divalent metal ions, and when the metal ion concentration exceeds the DNA–phosphate concentration, the fraction of inner-sphere phosphate binding increases. In the presence of very high levels of Mg2+ (e.g., 3.1M), the inner-sphere ? outer-sphere equilibrium is shifted toward ~100% inner-sphere binding. A comparison of our DNA results and previous results obtained with tRNA indicates that tRNA and DNA have very similar divalent metal ion binding properties. A comparison of the present results with the predictions of polyelectrolyte theories is presented.  相似文献   

5.
25-Hydroxycholesterol and 25-hydroxy vitamin D-3 increased the permeability of liposomes to Ca2+ measured by the arsenazo III encapsulation technique. This effect was sensitive to the lipid composition of the membrane, with changes that decreased the motional freedom of phospholipid acyl chains decreasing Ca2+ permeability. The greatest permeability was observed with the zwitter-ionic phospholipids, phosphatidylcholine and phosphatidylethanolamine, whereas the acidic phospholipids, phosphatidylinositol and phosphatidylserine, depressed Ca2+ permeability. The effect was not specific for Ca2+. Other divalent cations were translocated in the order Mn2+ > Mg2+  Ca2+ ? Sr2+  Ba2+. The permeability of liposomes to the monovalent cation, Na+, was also substantially increased. The effect did not appear to be due to ionophoretic properties of the sterols, and it is suggested that perturbation of the membranes by the polar 25-hydroxyl group may play a role in increasing membrane permeability.  相似文献   

6.
P2X2 purinoceptors are cation-selective channels activated by ATP and its analogues. Using single channel measurements we studied the channel's selectivity for the alkali metal ions and organic monovalent cations NMDG+, Tris+, TMA+, and TEA+. The selectivity sequence for currents carried by alkali metal ions is: K+ > Rb+ > Cs+ > Na+ > Li+, which is Eisenman sequence IV. This is different from the mobility sequence of the ions in free solution suggesting there is weak interaction between the ions and the channel interior. The relative conductance for alkali ions increases linearly in relation to the Stokes radius. The organic ions NMDG+, Tris+, TMA+ and TEA+ were virtually impermeant. The divalent ions (Mn2+, Mg2+, Ca2+ and Ba2+) induced a fast block visible as a reduction in amplitude of the unitary currents. Using a single-site binding model, the divalent ions exhibited an equilibrium affinity sequence of Mn2+ > Mg2+ > Ca2+ > Ba2+. Received: 3 May 1999/Revised: 23 August 1999  相似文献   

7.
Ion binding constants for phosphatidylserine membranes have been derived from the variation of the surface potential of phosphatidylserine monolayers with divalent cation concentrations in the presence of various monovalent salts in the aqueous subphase. The observed surface potential data for the monolayers, analyzed by use of the Gouy-Chapman diffuse potential theory, together with a simple binding reaction formula, yield, for Ca2+, Mg2+, Na+ and (Me)4N+ binding constant values of 30 M?1, 10 M?1, 0.6 M?1 and 0.05 M?1, respectively. The effect of pH on surface potential of phosphatidylserine monolayers was found to be dependent upon ionic species other than H+ in the subphase solution. The distinction between apparent and intrinsic dissociation constants of H+ for biomolecules was made in terms of ion binding due to other ions at the same site as for H+ in biomolecules.  相似文献   

8.
The voltage-gated proton channel Hv1 functions as a dimer, in which the intracellular C-terminal domain of the protein is responsible for the dimeric architecture and regulates proton permeability. Although it is well known that divalent metal ions have effect on the proton channel activity, the interaction of divalent metal ions with the channel in detail is not well elucidated. Herein, we investigated the interaction of divalent metal ions with the C-terminal domain of human Hv1 by CD spectra and fluorescence spectroscopy. The divalent metal ions binding induced an obvious conformational change at pH 7 and a pH-sensitive reduction of thermostability in the C-terminal domain. The interactions were further estimated by fluorescence spectroscopy experiments. There are at least two binding sites for divalent metal ions binding to the C-terminal domain of Hv1, either of which is close to His244 or His266 residue. The binding of Zn2+ to the two sites both enhanced the fluorescence of the protein at pH 7, whereas the binding of other divalent metal ions to the two sites all resulted fluorescence quenching. The orders of the strength of divalent metal ions binding to the two sites from strong to weak are both Co2+, Ca2+, Ni2+, Mg2+, and Mn2+. The strength of Ca2+, Co2+, Mg2+, Mn2+ and Ni2+ binding to the site close to His244 is stronger than that of these divalent metal ions binding to the site close to His266.  相似文献   

9.
Microsomal membranes isolated from barley roots (Hordeum vulgare L. cv. CM72) contained endogenous protein phosphorylation activities that were greatly enhanced by Mn2+. Mg2+ions also stimulated protein phosphorylation, but to a lesser extent than Mn2+. Ca2+ enhanced Mg2+, but not Mn2+-dependent phosphorylation. It is proposed that this strong enhancement by Mn2+ may be due to a greater affinity of Mn2+ than either Ca2+ or Mg2+ for both the Ca2+ and Mg2+ binding sites of certain kinases. Some Mn2+ stimulated kinase activity was eliminated from the membrane by washing with 0.2 mol/L KCl. The KCl extract contained histone and casein kinase activities, and 4 major phosphoproteins that were phosphorylated on serine and threonine residues. Phosphorylation of a 52 kDa polypeptide corresponded with the characteristics of the histone kinase activity and may represent the autophosphorylation of a CDPK-type kinase. Phosphorylation of a 36 kDa polypeptide was Ca2+ stimulated and may represent the autophosphorylation of a different type of unknown kinase. Polypeptides of 18 and 15 kDa had characteristics that suggest they were autophosphorylating subunits of a membrane bound nucleotide di-phosphokinase.  相似文献   

10.
Ca2+ binding to fragmented sarcolemma isolated from canine heart was measured by an ultracentrifugation technique. Two classes of binding site with dissociation constants of 2.0 · 10?5 and 1.2 · 10?3 M were identified. The capacities of the high- and low-affinity sites were 15 and 452 nmol/mg, respectively. These sites were not affected by treatment with neuraminidase. The effects of various cations and drugs on Ca2+ binding were studied. All cations tested inhibited Ca2+ binding with the following order of potency: trivalent > divalent > monovalent cations. The order of potency for the monovalent ions was: Na+ > K+ > Li+ ? Cs+ and for the divalent and trivalent ions: La3+ ? Mn2+ > Sr2+ ? Ba2+ > Mg2+. 1 · 10?3 M caffeine and 1 · 10?8 M ouabain increased the capacity of the low-affinity sites to 1531 and 837 nmol/mg, respectively. 1 · 10?7 M verapamil, acidosis (pH 6.4), 1?10?5 M Mn2+ and 1 · 10?4 M ouabain depressed the capacity of the low-affinity sites to a range of 154–291 nmol/mg. The dissociation constants of the high- and low-affinity sites and the capacity of the high-affinity sites were not affected by these agents.  相似文献   

11.
Extracellular divalent cations are important regulators of integrin ligand binding activity. In this study we evaluated how divalent cations affect the organization of integrins into focal adhesion sites. Integrins αvβ3 and αvβ5 were compared because they share a high degree of structural homology and because both integrins mediate cell adhesion to vitronectin. On MG-63 osteosarcoma cells, we found that both the extent and pattern of integrin organization was regulated by the type of extracellular divalent ion. Integrin αvβ3 organized in focal contacts when Mn2+ or Mg2+ was present, but not in Ca2+. In contrast, αvβ5 organized in focal contacts only when Ca2+ or Mg2+ was present. Integrin αvβ5 clustered in a centrally located punctate field on the ventral surface of the cell in the presence of Mn2+. These observations reveal a previously unappreciated role for divalent ions in regulating the organization of integrins into focal adhesion sites. © 1996 Wiley-Liss, Inc.  相似文献   

12.
In inside-out red cell membrane vesicles ATP-dependent calcium transport is activated by the divalent metal ions Mg2+, Mn2+, Co2+, Ni2+ and Fe2+. This activation is based on the formation of Me2+-ATP complexes which can serve as energy-donor substrates for the calcium pump, and probably, satisfy the requirement for free Me2+ in this transport process. Higher Me2+ concentrations inhibit calcium transport with various efficiencies. Mn2+ directly competes with Ca2+ at the transport site, while other divalent metal ions investigated have no such effect. The formation of the hydroxylamine-sensitive phosphorylated intermediate (EP) of the red cell membrane calcium pump from [γ-32P]ATP is induced by Ca2+ while rapid dephosphorylation requires the presence of Mg2+. At higher concentrations Mn2+ and Ni2+ inhibit predominantly the formation of EP, while Co2+ and Fe2+ block dephosphorylation. The possible sites and nature of the divalent metal interactions with the red cell calcium pump are discussed. Hydroxylamine-insensitive membrane phosphorylation in inside-out vesicles from [γ-32P]ATP is significantly stimulated by Mn2+ and Co2+, as compared to that produced by Mg2+, Fe2+ and Ni2+. Part of this labelling is found in phospholipids, especially in phosphatidylinositol. The results presented for the metal dependency of protein and lipid phosphorylation in red cell membranes may help in the characterization of ATP consumptions directly related to the calcium pump and those involved in various regulatory processes.  相似文献   

13.
The divalent cation requirements of NOS activity in bovine retina homogenate supernatant were investigated. Supernatants were assayed under standard conditions (in mM: EDTA 0.45, Ca2+ 0.25, Mg2+ 4.0). In order to investigate the enzyme's dependence on divalent cations, the tissue homogenate was depleted of di- and trivalent cations by passing it over a cation-exchange column (Chelex 100). Surprisingly, NOS activity was 50-100% higher in this preparation. However, addition of either EDTA (33 M) or EGTA (1 mM) almost fully inhibited NOS activity, suggesting a requirement for residual divalent metal cation(s). Phenanthroline or iminodiacetic acid at low concentrations had little effect on activity, suggesting no requirement for Fe2+, Zn2+ or Cu2+. Ca2+ had a moderate stimulatory effect, with an optimum activity around 0.01 mM. Mg2+ or Mn2+ had little effect at concentrations < 0.25 mM. However, in the presence of EDTA, Mn2+ or Ca2+ markedly stimulated NOS activity with the optimum at 0.1 mM. At high concentrations (> 0.1-0.2 mM), all divalent cations tested (Ba2+, Zn2+, Co2+, Mn2+, Mg2+, Ca2+), as well as La3+, dose-dependently inhibited NOS activity. We propose that retinal NOS requires low concentrations of naturally occurring divalent metal ions, most probably Ca2+, for optimal activity and is inhibited by high di- and trivalent metal concentrations, probably by competition with Ca2+.  相似文献   

14.
Y A Shin 《Biopolymers》1973,12(11):2459-2475
Changes in the conformation of poly(G), poly(C), poly(U), and poly(I) in the presence of divalent metal ions Mg2+, Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Cd2+, and Zn2+ have been measured by means of ORD and u.v. spectra. Mg2+ and Ca2+ ions stabilize helical structures of all the polynucleotides very effectively at concentrations several orders of magnitude lower than the effective concentration of Na+ion. Cu2+ and Cd2+ destabilize the helical structure of polynucleotides to form random coils. Zn2+, Ni2+, Co2+, and Mn2+ions do not behave in such a clear-cut manner: they selectively stabilize some ordered structures, while destabilizing others, depending on the ligand strength of the nucleotide base as well as the preferred conformation of that polynucleotide.  相似文献   

15.
Cation binding to brain plasma membranes has been studied using anionic sulfonate fluorescent probes. Ion affinity sequences follow the order Mg2+ > Ca2+ ? K+ > Cs+ > Na+ > Li+. The order of effectiveness, in increasing probe fluorescence, is the reverse of the affinity sequence for ions of the same charge. The affinity orders for erythrocyte membranes and dipalmitoyl lecithin are Mg2+ > Ca2+ ? Cs+ > K+ > Na+ > Li+ and Mg2+ > Ca2+ ? Li+ > Na+ > K+ > Cs+. These sequence variations are related to the differences in the nature of the ion binding sites. Heterogeneity in ion binding sites is demonstrated. Evidence is presented for the role of proteins in binding hydrophobic probes. The problem of separating specific conformational effects on ion binding from nonspecific charge neutralization effects is discussed. Pyrene excimer fluoresence rules out the possibility of extensive changes in mobility in the lipid phase on cation binding. Tetrodotoxin has been shown to inhibit Li+-, Na+-, and K+-induced fluorescence enancements of 1-anilino-8-naphthalene sulfonate bound to brain membranes.  相似文献   

16.
Magnesium-dependent adenosine triphosphatase, purified from sheep kidney medulla using digitonin, has been characterized in a series of kinetic and magnetic resonance studies. Kinetic studies of divalent metal activation using either Mg2+ or Mn2+ indicate a biphasic response to divalent cations. Apparent Km values of 23 μm for free Mg2+ and 3.3 μm for free Mn2+ are obtained at low levels of added metal, while Km values of 0.50 mm for free Mg2+ and 0.43 mm for free Mn2+ are obtained at much higher levels of divalent cations. In all cases the kinetic data indicate that the binding of divalent metals is independent of the substrate, ATP. Kinetic studies of the substrate requirements of the Mg2+-ATPase also yield biphasic Lineweaver-Burk plots. At low ATP concentrations, kinetic studies yield apparent Km values for free ATP of 6.0 and 1.4 μm with Mg2+ and Mn2+, respectively, as the activating divalent metals. At much higher levels of ATP the response of the enzyme to ATP changes so that Km values for free ATP of 8.0 and 2.0 mm are obtained for Mg2+ and Mn2+, respectively. In both cases, however, the binding of ATP is independent of added metal. ADP inhibits the Mg2+-ATPase and the kinetic data indicate that ADP competes with ATP at both the high and low affinity sites. Dixon plots of the data are consistent with competitive inhibition at both ATP sites, with Ki values of 10.5 μm and 4.5 mm. Electron paramagnetic resonance and water proton relaxation rate studies show that the enzyme binds 1 g ion of Mn2+ per 469,000 g of protein. The Mn2+ binding studies yield a KD for Mn2+ at the single high affinity site of 2 μm, in good agreement with the kinetically determined activator constant for Mn2+ at low Mn2+ levels. Moreover, the EPR binding studies also indicate the existence of 34 weak sites for Mn2+ per single high affinity Mn2+ site. The KD for Mn2+ at these sites is 0.55 mm, in good agreement with the kinetic activator constant for Mn2+ of 0.43 mm, consistent with additional activation of the enzyme by the large number of weaker metal binding sites. The enhancement of water proton relaxation by Mn2+ in the presence of the enzyme is also consistent with the tight binding of a single Mn2+ ion per 469,000 Mr protein and the weaker binding of a large number of divalent metal ions. Analysis of the data yields a value for the enhancement for bound Mn2+ at the single tight site, ?b, of 5 and an enhancement at the 34 weak sites of 11. The frequency dependence of water proton relaxation by Mn2+ at the single tight site yields a dipolar correlation time (constant from 8–60 MHz) of 3.18 × 10?9 s. The kinetics and metal binding studies, together with the effect of temperature on ATPase activity at high and low levels of ATP, are consistent with the existence in this preparation of a single Mg2+-ATPase, with high and low affinity sites for divalent metals and for ATP. Observations of both high and low affinities for ATP have been made with two other purified ATPases. The similarities of these systems to the Mg2+-ATPase described here are discussed.  相似文献   

17.
The interactions between oligonucleotides and inorganic cations have been measured by capillary zone electrophoresis. With increasing concentrations of divalent cations (Ca2+, Mg2+, Mn2+ and Ni2+) in the running buffer, the migration behavior was evaluated by calculation of the binding constants. Besides these fundamental studies of binding equilibria, different buffer components, tris(hydroxymethyl)aminomethane and 3-(N-morpholino)propanesulfonic acid, have been investigated and their effects on metal ion binding quantified.  相似文献   

18.
The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca2+, Mg2+, Mn2+, or Zn2+ were prepared, and their antioxidant potencies were compared. CS chelating with Ca2+ or Mg2+ ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H+ form. In contrast, CS chelating with Ca2+ or Mg2+ ion showed remarkably enhanced superoxide radical scavenging activity than CS of H+ or Na+ form. Moreover, CS chelating with divalent metal ions, Ca2+, Mg2+, Mn2+, or Zn2+, showed noticeably higher hydroxyl radical scavenging activity than CS of H+ or Na+ form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions.  相似文献   

19.
Nucleic acids generally reside in cellular aqueous solutions with mixed divalent/monovalent ions, and the competitive binding of divalent and monovalent ions is critical to the structures of nucleic acids because of their polyanionic nature. In this work, we first proposed a general and effective method for simulating a nucleic acid in mixed divalent/monovalent ion solutions with desired bulk ion concentrations via molecular dynamics (MD) simulations and investigated the competitive binding of Mg2+/Na+ ions to various nucleic acids by all-atom MD simulations. The extensive MD-based examinations show that single MD simulations conducted using the proposed method can yield desired bulk divalent/monovalent ion concentrations for various nucleic acids, including RNA tertiary structures. Our comprehensive analyses show that the global binding of Mg2+/Na+ to a nucleic acid is mainly dependent on its structure compactness, as well as Mg2+/Na+ concentrations, rather than the specific structure of the nucleic acid. Specifically, the relative global binding of Mg2+ over Na+ is stronger for a nucleic acid with higher effective surface charge density and higher relative Mg2+/Na+ concentrations. Furthermore, the local binding of Mg2+/Na+ to a phosphate of a nucleic acid mainly depends on the local phosphate density in addition to Mg2+/Na+ concentrations.  相似文献   

20.
The thermal denaturation method was employed to study the effect of Ca2+ and Mn2+ ions on the DNA helix–coil transition parameters at Na+ concentrations of 10?3–10?1M. At low ion concentrations, thermal stability increases, the melting range passes through a maximum, and the denaturation curves become asymmetric. These changes are quantitatively similar for Mn2+ and Ca2+ ions. With a further increase in the concentration of bivalent ions, the conformational transition temperatures pass through a maximum, and the melting range first tends to saturation and then rapidly decreases to 1–2°C. The Mn2+ concentrations, at which the above effects occur, are an order of magnitude lower than the Ca2+ concentrations. Comparison of experimental results and calculation in terms of the ligand theory permitted estimation of binding constants characterizing association between Mn2+ and Ca2+ ions and bases of native and denatured DNA. We show that, unlike the interaction with phosphates, bivalent ion–DNA base binding is weakly dependent on monovalent ion concentration in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号