共查询到20条相似文献,搜索用时 0 毫秒
1.
M Saraste 《Biochimica et biophysica acta》1978,507(1):17-25
Purified Pseudomonas cytochrome oxidase has been associated with asolectin liposomes by two different methods. Firstly, the enzyme was attached to liposomic membranes by adding it to a cholate-phospholipid dispersion and subsequently dialyzing the detergent out of suspension. In the second case the enzyme was adsorbed on the preformed liposomes when added to them after the dialysis. A stimulation of the cytochrome oxidase activity approximately twenty-fold was observed by the first method. In contrast, the activation was absent in the second type of preparation, indicating that interaction between the enzyme and phospholipids is very different in the two types of vesicles. The cholate-dialysis method for reconstitution of protein-phospholipid vesicles seems to lead to rather heterogenous preparations. These can be further fractionated, not only according to their size but also to the protein/phospholipid ratio, by gel chromatography. 相似文献
2.
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 μM, respectively.2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme.3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M?1 · s?1 and dissociation constant Kd of 3.9 mM.4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M?1 · s?1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes.5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome a3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively. 相似文献
3.
Labelling with ferritin-conjugated antibody shows that Pseudomonas cytochrome cd1 is associated with the inner surface of the cytoplasmic membrane. Cytochrome cd1 is, however, enriched to the soluble fraction obtained after destruction of Pseudomonas spheroplasts. Comparison of the respiratory nitrite reductase activities, due to this cytochrome, between different cellular fractions and the purified enzyme shows that while the kinetic pattern and the temperature dependence of the activity remain almost the same the molecular activity is enhanced when the enzyme is released from cells.A new assay of respiratory nitrite reductase was developed in this study. The method is based on determination of the stoichiometrical proton consumption accompanying nitrite reduction. 相似文献
4.
A delay of some seconds is observed in the reaction of Pseudomonas cytochrome c peroxidase if the reaction is initiated by adding the enzyme to the reaction mixture containing reduced electron donor and hydrogen peroxide. This lag phase is avoided if the enzyme is incubated with the reduced electron donor and the reaction is started by adding hydrogen peroxide. The nature of the inital delay has been studied and it is shown that the peroxidase is reduced before a steady-state rate in the peroxidatic reaction is reached. The ability of the peroxidase to accept electrons from various electron donors emphasizes its cytochrome-like properties. 相似文献
5.
1. Stopped-flow experiments were performed in which solutions containing dithionite were mixed with air-saturated buffer. Cytochrome c oxidase present in the dithionite-containing syringe is fully oxidized within the mixing time and the oxygen-pulsed form of the oxidase is produced.2. The reduction of this form by dithionite, by dithionite plus cytochrome c and by dithionite plus methyl viologen or benzyl viologen was followed and compared with the corresponding reduction reactions of the ‘resting’ oxidized enzyme. Reduction by dithionite is relatively slow, but the rate of reduction is greatly increased by addition of cytochrome c or the viologens, which are even more effective than cytochrome c on a molar basis.3. Profound differences between the transient kinetics of the reduction of the two oxidized oxidase derivatives were observed. The results are consistent with a direct reduction of cytochrome a followed by an intramolecular electron transfer to cytochrome a3 (kobs1 = 7.5 s?1 for the oxygen-pulsed oxidase).4. The spectrum of the oxygen-pulsed oxidase formed within 5 ms of the mixing closely resembles that of the ‘oxygenated’ compound, but there were small differences between the two spectra. 相似文献
6.
Respiratory heme-copper oxidases are integral membrane proteins that catalyze the reduction of molecular oxygen to water using electrons donated by either quinol (quinol oxidases) or cytochrome c (cytochrome c oxidases, CcOs). Even though the X-ray crystal structures of several heme-copper oxidases and results from functional studies have provided significant insights into the mechanisms of O2-reduction and, electron and proton transfer, the design of the proton-pumping machinery is not known. Here, we summarize the current knowledge on the identity of the structural elements involved in proton transfer in CcO. Furthermore, we discuss the order and timing of electron-transfer reactions in CcO during O2 reduction and how these reactions might be energetically coupled to proton pumping across the membrane. 相似文献
7.
In order to facilitate the purification of salicylate hydroxylase (salicylate 1-monooxygenase, EC 1.14.13.1) from Pseudomonas sp. RPP (ATCC 29351), an affinity chromatography procedure was developed employing immobilized salicylate as the affinity ligand. The immobilization was achieved by reacting p-aminosalicylate with the N-hydroxysuccinimide ester of Sepharose 4B-6-aminohexanoic acid. When the bacterial crude extract was chromatographed with this affinity column, salicylate hydroxylase was absorbed to the gel while the bulk of protein freely passed through. The absorbed enzyme was subsequently eluted from the affinity column by applying a 0–60 mm sodium salicylate gradient. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzymatically most active fraction of the affinity effluent revealed salicylate hydroxylase was by far the most predominant protein but there were also small amounts of contaminating proteins. However, a virtually homogeneous enzyme preparation was obtained when the crude extract was first fractionated with a DE-52 anion-exchange column followed by the affinity step. The enzyme preparation obtained by this two-step procedure showed a specific activity of 14.9 units/mg and an A450:A372:A280 of 1.01:1:10.23. Because most of the enzymes belonging to the class of external flavoprotein monooxygenase utilize salicylate analogs as substrates and share many other common properties, there is a strong possibility that the salicylate column may be useful for the purification of other member monooxygenases. 相似文献
8.
9.
10.
Dicyclohexylcarbodiimide (DCCD) reacted with beef heart cytochrome c oxidase to inhibit the proton-pumping function of this enzyme and to a lesser extent to inhibit electron transfer. The modification of cytochrome c oxidase in detergent dispersion or in vesicular membranes was in subunits II–IV. Labelling followed by fragmentation studies showed that there is one major site of modification in subunit III. DCCD was also incorporated into several sites in subunit II and at least one site in subunit IV. The major site in subunit III has a specificity for DCCD at least one order of magnitude greater than that of other sites (in subunits II and IV). Its modification could account for all of the observed effects of the reagent, at least for low concentrations of DCCD. Labelling of subunit II by DCCD was blocked by prior covalent attachment of arylazidocytochrome c, a cytochrome c derivative which binds to the high-affinity binding site for the substrate. The major site of DCCD binding in subunit III was sequenced. The label was found in glutamic acid 90 which is in a sequence of eight amino acids remarkably similar to the DCCD-binding site within the proteolipid protein of the mitochondrial ATP synthetase. 相似文献
11.
Citrate and other polyanion binding to ferricytochrome c partially blocks reduction by ascorbate, but at constant ionic strength the citrate-cytochrome c complex remains reducible; reduction by TMPD is unaffected. At a constant high ionic strength citrate inhibits the cytochrome c oxidase reaction competitively with respect to cytochrome c, indicating that ferrocytochrome c also binds citrate, and that the citrateferrocytochrome c complex is rejected by the binding site at high ionic strength. At lower ionic strengths, citrate and other polyanions change the kinetic pattern of ferrocytochrome c oxidation from first-order towards zero-order, indicating preferential binding of the ferric species, followed by its exclusion from the binding site. The turnover at low cytochrome c concentrations is diminished by citrate but not the Km (apparent non-competitive inhibition) or the rate of cytochrome a reduction by bound cytochrome c. Small effects of anions are seen in direct measurements of binding to the primary site on the enzyme, and larger effects upon secondary site binding. It is concluded that anion-cytochrome c complexes may be catalytically competent but that the redox potentials and/or intramolecular behaviour of such complexes may be affected when enzyme-bound. Increasing ionic strength diminishes cytochrome c binding not only by decreasing the ‘association’ rate but also by increasing the ‘dissociation’ rate for bound cytochrome c converting the ‘primary’ (T) site at high salt concentrations into a site similar kinetically to the ‘secondary’ (L) site at low ionic strength. A finite Km of 170 μM at very high ionic strength indicates a ratio of of about 5000. It is proposed that anions either modify the E10 of cytochrome c bound at the primary (T) site or that they perturb an equilibrium between two forms of bound c in favour of a less active form. 相似文献
12.
The proton translocating properties of cytochrome c oxidase in whole cells of Paracoccus denitrificans have been studied with the oxidant pulse method. quotients have been measured with endogenous substrates, added methanol and added ascorbate (+TMPD) as reductants, and oxygen and ferricyanide as oxidants. It was found that both the observed with ascorbate (+TMPD) as reductant, and the differences in proton ejection between oxygenand ferricyanide pulses, with endogenous substrates or added methanol as a substrte, indicate that the P. denitrificans cytochrome c oxidase translocates protons with a stoichiometry of . The results presented in this and previous papers are in good agreement with recent findings concerning the mitochondrial cytochrome c oxidase, and suggest unequal charge separation by different coupling segments of the respiratory chain of P. denitrificans. 相似文献
13.
14.
Two radicals have been detected previously by electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies in bovine cytochrome oxidase after reaction with hydrogen peroxide, but no correlation could be made with predicted levels of optically detectable intermediates (PM, F and F) that are formed. This work has been extended by optical quantitation of intermediates in the EPR/ENDOR sample tubes, and by comparison with an analysis of intermediates formed by reaction with carbon monoxide in the presence of oxygen. The narrow radical, attributed previously to a porphyrin cation, is detectable at low levels even in untreated oxidase and increases with hydrogen peroxide treatments generally. It is presumed to arise from a side-reaction unrelated to the catalytic intermediates. The broad radical, attributed previously to a tryptophan radical, is observed only in samples with a significant level of F but when F is generated with hydrogen peroxide, is always accompanied by the narrow radical. When PM is produced at high pH with CO/O2, no EPR-detectable radicals are formed. Conversion of the CO/O2-generated PM into F when pH is lowered is accompanied by the appearance of a broad radical whose ENDOR spectrum corresponds to a tryptophan cation. Quantitation of its EPR intensity indicates that it is around 3% of the level of F determined optically. It is concluded that low pH causes a change of protonation pattern in PM which induces partial electron redistribution and tryptophan cation radical formation in F. These protonation changes may mimic a key step of the proton translocation process. 相似文献
15.
The proton translocating properties of cytochrome c oxidase have been studied in artificial phospholipid vesicles into the membranes of which the isolated and purified enzyme was incorporated.Initiation of oxidation of ferrocytochrome c by addition of the cytochrome, or by addition of oxygen to an anaerobic vesicle suspension, leads to ejection of H+ from the vesicles provided that charge compensation is permitted by the presence of valinomycin and K+. Proton ejection is not observed if the membranes have been specifically rendered permeable to protons.The proton ejection is the result of true translocation of H+ across the membrane as indicated by its dependence on the intravesicular buffering power relative to the number of particles (electrons and protons) transferred by the system, and since it can be shown not to be due to a net formation of acid in the system.Comparison of the initial rates of proton ejection and oxidation of cytochrome c yields a quotient close to 1.0 both in cytochrome c and oxygen pulse experiments. An approach towards the same stoichiometry is found by comparison of the extents of proton ejection and electron transfer under appropriate experimental conditions.It is concluded that cytochrome c oxidase is a proton pump, which conserves redox energy by converting it into an electrochemical proton gradient through electrogenic translocation of H+. 相似文献
16.
1. Potentiometric circular dichroism titrations of cytochrome c oxidase, carried out in the absence of cytochrome c, confirm the potentiometric equivalence of the two heme a groups of cytochrome c oxidase. In the presence of cytochrome c, two different midpoint potentials are found for the two heme a groups of cytochrome c oxidase.2. Circular dichroism difference spectra (reduced minus oxidized) of the two heme a components of cytochrome c oxidase have been obtained by means of this potentiometric titration. On reduction of the first heme a group a circular dichroism difference spectrum is obtained with peaks at 425, 442 and 602.5 nm; the second heme a group shows difference peaks at 434, 447 and 608 nm. Whereas both heme a groups contribute about equally to the absorbance difference spectrum, the second heme a group reduced contributes about twice as much to the circular dichroism difference spectrum as does the first heme a group.3. From these spectral and circular dichroism differences it is concluded that, on reduction of or ligand binding to cytochrome c oxidase, conformational changes occur which affect the symmetry of the environments of the heme a groups. 相似文献
17.
1. CD spectra of cytochrome c oxidase have been determined both in the absence and presence of the extrinsic ligands CO, NO, cyanide and azide.2. CO and NO affect the CD spectrum of cytochrome c oxidase in a similar way.3. Cyanide and azide also affect the CD spectrum of cytochrome c oxidase in a similar way, but distinctly different from CO and NO.4. From the CD spectra of the oxidized and reduced enzyme, in the presence and absence of extrinsic ligands, CD difference spectra (reduced minus oxidized) are calculated for the so-called cytochrome a and cytochrome a3 moieties of the enzyme.5. These spectra are largely dependent on the extrinsic ligand used. It is therefore concluded that these spectra do not represent independent cytochrome a and cytochrome a3 difference spectra, but that heme-heme interactions occur within the cytochrome c oxidase molecule, in such a way that binding of a ligand to one of the heme a groups of cytochrome c oxidase affects the spectral properties of the other heme a group.6. As a consequence, ligand-binding studies cannot give information as to the pre-existence of separate cytochrome a and cytochrome a3 moieties in the absence of extrinsic ligands. 相似文献
18.
- 1.
- 1. The ascorbate reducibility of cytochrome c (beef or horse heart) in its complexes with cytochrome c oxidase (beef heart) and cytochrome c peroxidase (yeast) has been studied. 相似文献
19.
Elisa Fadda 《BBA》2008,1777(3):277-284
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway. 相似文献
20.
Cytochrome c oxidase is essential for aerobic life as a membrane-bound energy transducer. O2 reduction at the haem a3-CuB centre consumes electrons transferred via haem a from cytochrome c outside the membrane. Protons are taken up from the inside, both to form water and to be pumped across the membrane (M.K.F. Wikström, Nature 266 (1977) 271 [1]; M. Wikström, K. Krab, M. Saraste, Cytochrome Oxidase, A Synthesis, Academic Press, London, 1981 [2]). The resulting electrochemical proton gradient drives ATP synthesis (P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, UK, 1966 [3]). Here we present a molecular mechanism for proton pumping coupled to oxygen reduction that is based on the unique properties of water in hydrophobic cavities. An array of water molecules conducts protons from a conserved glutamic acid, either to the Δ-propionate of haem a3 (pumping), or to haem a3-CuB (water formation). Switching between these pathways is controlled by the redox-state-dependent electric field between haem a and haem a3-CuB, which determines the water-dipole orientation, and therefore the proton transfer direction. Proton transfer via the propionate provides a gate to O2 reduction. This pumping mechanism explains the unique arrangement of the metal cofactors in the structure. It is consistent with the large body of biochemical data, and is shown to be plausible by molecular dynamics simulations. 相似文献