首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of CO binding by the cytochrome c oxidase of pigeon heart mitochondria were studied as a function of membrane energization at temperatures from 180 to 280 degrees K in an ethylene glycol/water medium. Samples energized by ATP showed acceleration of CO binding compared to those untreated or uncoupled by carbonylcyanide p-trifluoromethyoxyphenylhydrazone but only at relatively low temperatures and high CO concentrations. Experiments using samples in a "mixed valency" (partially oxidized) state showed that the acceleration of ligand binding is not due to the formation of a partially oxidized state via reverse electron transport. It is concluded that in the deenergized state one CO molecule can be closely associated with the cytochrome a3 heme site without actually being bound to the heme iron; in the energized state, two or more ligand molecules can occupy this intermediate position. The change in the apparent ligand capacity of a region near the heme iron in response to energization is evidence for an interaction between cytochrome oxidase and the ATPase system. Furthermore, these results suggest a control mechanism for O2 binding.  相似文献   

2.
3.
4.
J. Wilms  J. Lub  R. Wever 《BBA》1980,589(2):324-335
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 μM, respectively.2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme.3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M?1 · s?1 and dissociation constant Kd of 3.9 mM.4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M?1 · s?1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes.5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome a3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively.  相似文献   

5.
The binding of CO to ascorbate-reduced Pseudomonas cytochrome oxidase was investigated by static-titration, stopped-flow and flash-photolytic techniques. Static-titration data indicated that the binding process was non-stoicheiometric, with a Hill number of 1.44. Stopped-flow kinetics obtained on the binding of CO to reduced Pseudomonas cytochrome oxidase were biphasic in form; the faster rate exhibited a linear dependence on CO concentration with a second-order rate constant of 2 X 10(4) M-1-s-1, whereas the slower reaction rapidly reached a pseudo-first-order rate limit at approx. 1s-1. The relative proportions of the two phases observed in stopped-flow experiments also showed a dependency on CO concentration, the slower phase increasing as the CO concentration decreased. The kinetics of CO recombination after flash-photolytic dissociation of the reduced Pseudomonas cytochrome oxidase-CO complex were also biphasic in character, both phases showing a linear pseudo-first-order rate dependence on CO concentration. The second-order rate constants were determined as 3.6 X 10(4)M-1-s-1 and 1.6 X 10(4)M-1-s-1 respectively. Again the relative proportions of the two phases varied with CO concentration, the slower phase predominating at low CO concentrations. CO dissociation from the enzyme-CO complex measured in the presence of O2 and NO indicated the presence of two rates, of the order of 0.03s-1 and 0.15s-1. When sodium dithionite was used as a reducing agent for the Pseudomonas cytochrome oxidase, the CO-combination kinetics observed by both stopped flow and flash photolysis were extremely complex and not able to be simply analysed.  相似文献   

6.
Oxidation of ferrocytochrome c by molecular oxygen catalysed by cytochrome c oxidase (cytochrome aa3) is coupled to translocation of H+ ions across the mitochondrial membrane. The proton pump is an intrinsic property of the cytochrome c oxidase complex as revealed by studies with phospholipid vesicles inlayed with the purified enzyme. As the conformation of cytochrome aa3 is specifically sensitive to the electrochemical proton gradient across the mitochondrial membrane, it is likely that redox energy is primarily conserved as a conformational “strain” in the cytochrome aa3 complex, followed by relaxation linked to proton translocation. Similar principles of energy conservation and transduction may apply on other respiratory chain complexes and on mitochondrial ATP synthase.  相似文献   

7.
1. Potentiometric circular dichroism titrations of cytochrome c oxidase, carried out in the absence of cytochrome c, confirm the potentiometric equivalence of the two heme a groups of cytochrome c oxidase. In the presence of cytochrome c, two different midpoint potentials are found for the two heme a groups of cytochrome c oxidase.2. Circular dichroism difference spectra (reduced minus oxidized) of the two heme a components of cytochrome c oxidase have been obtained by means of this potentiometric titration. On reduction of the first heme a group a circular dichroism difference spectrum is obtained with peaks at 425, 442 and 602.5 nm; the second heme a group shows difference peaks at 434, 447 and 608 nm. Whereas both heme a groups contribute about equally to the absorbance difference spectrum, the second heme a group reduced contributes about twice as much to the circular dichroism difference spectrum as does the first heme a group.3. From these spectral and circular dichroism differences it is concluded that, on reduction of or ligand binding to cytochrome c oxidase, conformational changes occur which affect the symmetry of the environments of the heme a groups.  相似文献   

8.
Lars C. Petersen  Raymond P. Cox 《BBA》1980,590(1):128-137
1. Stopped-flow experiments were performed in which solutions containing dithionite were mixed with air-saturated buffer. Cytochrome c oxidase present in the dithionite-containing syringe is fully oxidized within the mixing time and the oxygen-pulsed form of the oxidase is produced.2. The reduction of this form by dithionite, by dithionite plus cytochrome c and by dithionite plus methyl viologen or benzyl viologen was followed and compared with the corresponding reduction reactions of the ‘resting’ oxidized enzyme. Reduction by dithionite is relatively slow, but the rate of reduction is greatly increased by addition of cytochrome c or the viologens, which are even more effective than cytochrome c on a molar basis.3. Profound differences between the transient kinetics of the reduction of the two oxidized oxidase derivatives were observed. The results are consistent with a direct reduction of cytochrome a followed by an intramolecular electron transfer to cytochrome a3 (kobs1 = 7.5 s?1 for the oxygen-pulsed oxidase).4. The spectrum of the oxygen-pulsed oxidase formed within 5 ms of the mixing closely resembles that of the ‘oxygenated’ compound, but there were small differences between the two spectra.  相似文献   

9.
R.H. Tiesjema  B.F. Van Gelder 《BBA》1974,347(2):202-214
1. CD spectra of cytochrome c oxidase have been determined both in the absence and presence of the extrinsic ligands CO, NO, cyanide and azide.2. CO and NO affect the CD spectrum of cytochrome c oxidase in a similar way.3. Cyanide and azide also affect the CD spectrum of cytochrome c oxidase in a similar way, but distinctly different from CO and NO.4. From the CD spectra of the oxidized and reduced enzyme, in the presence and absence of extrinsic ligands, CD difference spectra (reduced minus oxidized) are calculated for the so-called cytochrome a and cytochrome a3 moieties of the enzyme.5. These spectra are largely dependent on the extrinsic ligand used. It is therefore concluded that these spectra do not represent independent cytochrome a and cytochrome a3 difference spectra, but that heme-heme interactions occur within the cytochrome c oxidase molecule, in such a way that binding of a ligand to one of the heme a groups of cytochrome c oxidase affects the spectral properties of the other heme a group.6. As a consequence, ligand-binding studies cannot give information as to the pre-existence of separate cytochrome a and cytochrome a3 moieties in the absence of extrinsic ligands.  相似文献   

10.
In this overview we present recent combined electrochemical, spectroelectrochemical, spectroscopic and computational studies from our group on the electron transfer reactions of cytochrome c and of the primary electron acceptor of cytochrome c oxidase, the CuA site, in biomimetic complexes. Based on these results, we discuss how protein dynamics and thermal fluctuations may impact on protein ET reactions, comment on the possible physiological relevance of these results, and finally propose a regulatory mechanism that may operate in the Cyt/CcO electron transfer reaction in vivo. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

11.
The kinetics and thermodynamics of the reaction of mixed valence state membrane-bound cytochrome oxidase with CO over the 178-203 K range has been studied by multichannel optical spectroscopy at three wavelength pairs (444-463 nm in the Soret region, and 590-630 and 608-630 nm in the alpha region) and analysed by non-linear optimization techniques. As in the case of the fully reduced membrane-bound cytochrome oxidase-CO reaction (Clore, G.M. and Chance, E.M. (1978) Biochem J. 175, 709-725), the normalized progress curves at the three wavelength pairs are significantly different indicating, on the basis of Beer's law, the presence of a minimum of three optically distinct species. The only model that satisfies the triple statistical requirement of a standard deviation within the standard error of the data, a random distribution of residuals and good determination of the optimized parameters, is a two species sequential mechanism: flash photolysis of the mixed valence state cytochrome oxidase-CO complex (species IIMC) yields unliganded mixed valence state cytochrome oxidase (species EM) and free CO which then recombine to form species IMC; species IMC is then converted into species IIMC. All the thermodynamic parameters describing the model are calculated and compared to those obtained for the fully reduced membrane-bound cytochrome oxidase-CO reaction (Clore and Chance (1978) Biochem. J. 175, 709-725). Although there are some qualitative similarities in the kinetics and thermodynamics of the reactions of mixed valence state (alpha 23+Cu+B.ALPHA 3+Cu2+A) and fully reduced (a3 2+Cu B + . a2+Cu A+) cytochrome oxidase with CO, there are large and significant quantitative differences in zero-point activation energies and frequency factors; over the temperature range studied, the mixed valence state cytochrome oxidase-CO reaction is found to proceed at a significantly slower rate than the fully reduced cytochrome oxidase-CO reaction. These differences indicate that changing the valence states of cytochrome a and CuA has a significant effect on the CO binding properties of cytochrome a 3 and possibly CuB.  相似文献   

12.
S.P.J. Brooks  P. Nicholls 《BBA》1982,680(1):33-43
Citrate and other polyanion binding to ferricytochrome c partially blocks reduction by ascorbate, but at constant ionic strength the citrate-cytochrome c complex remains reducible; reduction by TMPD is unaffected. At a constant high ionic strength citrate inhibits the cytochrome c oxidase reaction competitively with respect to cytochrome c, indicating that ferrocytochrome c also binds citrate, and that the citrateferrocytochrome c complex is rejected by the binding site at high ionic strength. At lower ionic strengths, citrate and other polyanions change the kinetic pattern of ferrocytochrome c oxidation from first-order towards zero-order, indicating preferential binding of the ferric species, followed by its exclusion from the binding site. The turnover at low cytochrome c concentrations is diminished by citrate but not the Km (apparent non-competitive inhibition) or the rate of cytochrome a reduction by bound cytochrome c. Small effects of anions are seen in direct measurements of binding to the primary site on the enzyme, and larger effects upon secondary site binding. It is concluded that anion-cytochrome c complexes may be catalytically competent but that the redox potentials and/or intramolecular behaviour of such complexes may be affected when enzyme-bound. Increasing ionic strength diminishes cytochrome c binding not only by decreasing the ‘association’ rate but also by increasing the ‘dissociation’ rate for bound cytochrome c converting the ‘primary’ (T) site at high salt concentrations into a site similar kinetically to the ‘secondary’ (L) site at low ionic strength. A finite Km of 170 μM at very high ionic strength indicates a ratio of KMK0M of about 5000. It is proposed that anions either modify the E10 of cytochrome c bound at the primary (T) site or that they perturb an equilibrium between two forms of bound c in favour of a less active form.  相似文献   

13.
Leslie I. Grad 《BBA》2006,1757(2):115-122
Mitochondrial respiratory chain dysfunction is responsible for a large variety of early and late-onset diseases. NADH-ubiquinone oxidoreductase (complex I) defects constitute the most commonly observed mitochondrial disorders. We have generated Caenorhabditis elegans strains with mutations in the 51 kDa active site subunit of complex I. These strains exhibit decreased NADH-dependent respiration and lactic acidosis, hallmark features of complex I deficiency. Surprisingly, the mutants display a significant decrease in the amount and activity of cytochrome c oxidase (complex IV). The metabolic and reproductive fitness of the mutants is markedly improved by riboflavin. In this study, we have examined how the assembly and activity of complexes I and IV are affected by riboflavin. Our results reveal that the mutations result in variable steady-state levels of different complex I subunits and in a significant reduction in the amount of COXI subunit. Using native gel electrophoresis, we detected assembly intermediates for both complexes I and IV. Riboflavin promotes the assembly of both complexes, resulting in increased catalytic activities. We propose that one primary pathogenic mechanism of some complex I mutations is to destabilize complex IV. Enhancing complex I assembly with riboflavin results in the added benefit of partially reversing the complex IV deficit.  相似文献   

14.
15.
H. Roberts  B. Hess 《BBA》1977,462(1):215-234
The steady-state kinetics of purified yeast cytochrome c oxidase were investigated at low ionic strength where the electrostatic interaction with cytochrome c is maximized. In 10 mM cacodylate/Tris (pH 6.5) the oxidation kinetics of yeast iso-1-cytochrome c were sigmoidal with a Hill coefficient of 2.35, suggesting cooperative binding. The half-saturation point was 1.14 μM. Horse cytochrome c exhibited Michaelis-Menten kinetics with a higher affinity (Km = 0.35 μM) and a 100% higher maximal velocity.In 67 mM phosphate the Hill coefficient for yeast cytochrome c decreased to 1.42, and the species differences in Hill coefficients were lessened. Under the latter conditions, a yeast enzyme preparation partially depleted of phospholipids was activated on addition of diphosphatidylglycerol liposomes. When the enzyme was incorporated into sonicated yeast promitochondrial particles the apparent Km for horse cytochrome c was considerably lower than the value for the isolated enzyme.ATP was found to inhibit both the isolated oxidase and the membrane-bound enzyme. With the isolated enzyme in 10 mM cacodylate/Tris, 3 mM ATP increased the half-saturation point with yeast cytochrome c 3-fold, without altering the maximal velocity or the Hill coefficient. 67 mM phosphate abolished the inhibition of the isolated oxidase by ATP.The increase in affinity for cytochrome c produced by binding the oxidase to the membrane was not observed in the presence of 3 mM ATP, with the result that the membrane-bound enzyme was more sensitive to inhibition by ATP. ADP was a less effective inhibitor than ATP, and did not prevent the inhibition by ATP.It is proposed that non-specific electrostatic binding of cytochrome c to phospholipid membranes, followed by rapid lateral diffusion, is responsible for the dependence of the affinity on the amount and nature of the phospholipids and on the ionic strength.ATP may interfere with the membrane-facilitated binding of cytochrome c by a specific electrostatic interaction with the membrane or by binding to cytochrome c.  相似文献   

16.
1.
1. The ascorbate reducibility of cytochrome c (beef or horse heart) in its complexes with cytochrome c oxidase (beef heart) and cytochrome c peroxidase (yeast) has been studied.  相似文献   

17.
Modulation of surface properties of biomembranes by any ligand leading to permeabilization, fusion, rupture, etc. is a fundamental requirement for many biological processes. In this work, we present the interaction of piroxicam, a long acting Non-Steroidal Anti-Inflammatory Drug (NSAID) with isolated mitochondria, membrane mimetic systems, intact cells and a mitochondrial protein cytochrome c. Dye permeabilization study on isolated mitochondria indicates that piroxicam can permeabilize mitochondrial membrane. Direct imaging by Scanning Electron Microscope (SEM) shows that piroxicam induces changes in mitochondrial membrane morphology leading to fusion and rupture. Transmission Electron Microscope (TEM) imaging of piroxicam treated DMPC vesicles and mixed micelles formed from CTAB and SDS show that causing membrane fusion is a general property of piroxicam at physiological pH. In intact cells viz., V79 Chinese Hamster lung fibroblast, piroxicam is capable of releasing cytochrome c from mitochondria into the cytosol in a dose dependent manner along with the enhancement of downstream proapoptotic event viz., increase in caspase-3 activity. We have also shown that piroxicam can reduce cytochrome c within a time frame relevant to its lifetime in blood plasma. UV-visible spectroscopy has been used to study the reaction mechanism and kinetics in detail, allowing us to propose and validate a Michaelis-Menten like reaction scheme. CD spectroscopy shows that small but significant changes occur in the structure of cytochrome c when reduced by piroxicam.  相似文献   

18.
Dicyclohexylcarbodiimide (DCCD) reacted with beef heart cytochrome c oxidase to inhibit the proton-pumping function of this enzyme and to a lesser extent to inhibit electron transfer. The modification of cytochrome c oxidase in detergent dispersion or in vesicular membranes was in subunits II–IV. Labelling followed by fragmentation studies showed that there is one major site of modification in subunit III. DCCD was also incorporated into several sites in subunit II and at least one site in subunit IV. The major site in subunit III has a specificity for DCCD at least one order of magnitude greater than that of other sites (in subunits II and IV). Its modification could account for all of the observed effects of the reagent, at least for low concentrations of DCCD. Labelling of subunit II by DCCD was blocked by prior covalent attachment of arylazidocytochrome c, a cytochrome c derivative which binds to the high-affinity binding site for the substrate. The major site of DCCD binding in subunit III was sequenced. The label was found in glutamic acid 90 which is in a sequence of eight amino acids remarkably similar to the DCCD-binding site within the proteolipid protein of the mitochondrial ATP synthetase.  相似文献   

19.
N Sone  A Naqui  C Kumar    B Chance 《The Biochemical journal》1984,221(2):529-533
Reaction of O2 and CO with a caa3-type terminal cytochrome oxidase (EC 1.9.3.1) from the thermophilic bacterium PS3 grown with high aeration was studied at low temperatures. The CO recombination at the temperature range studied (-50 degrees C to -80 degrees C) followed first-order kinetics with an activation energy of 29.3 kJ/mol (7.0 kcal/mol). In the presence of O2 at -113 degrees C the photolysed reduced form binds O2 to form an 'oxy' intermediate similar to Compound A. At a higher temperature (-97 degrees C) another intermediate, similar to Compound B, is formed as a result of electron transfer from the enzyme to the liganded O2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号