首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uncoupling agents inhibit chloride transport in red blood cells, which is a metabolism-independent process. An analysis of the molecular requirements shows that this inhibitory activity is closely correlated with the electronic and the hydrophobic bonding properties of phenols: the more lipophilic and the more electron-attracting the substituent groups are, the greater the activity they confer on the parent molecule. A recent structure-activity study concerning various classes of reversible inhibitors of chloride transport led to the same conclusion (Motais, R. and Cousin, J.L. (1977) in International Conference on Biological Membranes: Drugs, Hormones and Membranes (Bolis, L., Hoffman, J.F. and Straub, R.W., eds.), Raven Press, New York, in the press). The effects of substituents on the activity of phenols as uncouplers have been recently examined (Stockdale, M. and Selwyn, M.J. (1971) Eur. J. Biochem. 21, 565). The comparison of these results with our data shows that uncoupling depends more on electronic properties of phenols than does choloride inhibition.  相似文献   

2.
We have previously reported that human erythrocyte band 3 contains 90-95% of the reconstitutable glucose transport activity of the erythrocyte membrane (Shelton, R.L. and Langdon, R.G. (1983) Biochim. Biophys. Acta 733, 25-33). We have now found that monoclonal and polyclonal antibodies to epitopes on band 3 specifically removed band 3 and more than 90% of the reconstitutable glucose transport activity from unfractionated octylglucoside extracts of erythrocyte membranes; nonimmune serum removed neither. Western blots of whole membrane extracts revealed that the polyclonal antibody to band 4.5 used to isolate cDNA clones presumed to code for the transporter (Mueckler, M., Caruso, C., Baldwin, C.A., Pancio, M., Blench, J., Morris, H.B., Allard, W.J., Lienhard, G.E. and Lodish, H.F. (1985) Science 229, 941-945) reacts strongly with six discrete bands in the 4.5 region. A monoclonal antibody to band 3 also reacts with a Mr 55,000 component of band 4.5. We conclude that band 3 contains the major glucose transporter of human erythrocytes, and that the transport activity in band 4.5 might be attributable to a band 3 fragment. Band 3 is probably a multifunctional transport protein responsible for transport of glucose, anions, and water.  相似文献   

3.
The expression of the cystic fibrosis (CF) gene on its introduction into nonepithelial somatic cells has recently been shown to result in the appearance of distinctive low conductance chloride channels stimulated by cyclic AMP (Kartner, N., Hanrahan, J.W., Jensen, T.J., Naismith, A.L., Sun, S., Ackerley, C.A., Reyes, E.F., Tsui, L.-C., Rommens, J.M., Bear, C.E., and Riordan, J.R. (1991) Cell 64, 681-691; Anderson, M. P., Rich, D.P., Gregory, R.J., Smith, A.E., and Welsh, M.J. (1991) Science 251, 679-682). Since Xenopus oocytes provide a powerful system for ion channel characterization, we have examined whole cell and single channel currents in them after injection of cRNA to program the synthesis of the cystic fibrosis transmembrane conductance regulator (CFTR). This has enabled the direct demonstration that the cyclic AMP activation is mediated by protein kinase A and that CFTR is without effect on the endogenous calcium-activated chloride channels of the oocyte, which have been well characterized previously and widely used as reporters of the expression of G-protein-coupled receptors. These findings strengthen the argument that the CF gene codes for a novel regulated chloride channel rather than a regulatory protein which can modulate separate chloride channel molecules.  相似文献   

4.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that undergoes endocytosis through clathrin-coated pits. Previously, we demonstrated that Y1424A is important for CFTR endocytosis (Prince, L. S., Peter, K., Hatton, S. R., Zaliauskiene, L., Cotlin, L. F., Clancy, J. P., Marchase, R. B., and Collawn, J. F. (1999) J. Biol. Chem. 274, 3602-3609). Here we show that a second substitution in the carboxyl-terminal tail of CFTR, I1427A, on Y1424A background more than doubles CFTR surface expression as monitored by surface biotinylation. Internalization assays indicate that enhanced surface expression of Y1424A,I1427A CFTR is caused by a 76% inhibition of endocytosis. Patch clamp recording of chloride channel activity revealed that there was a corresponding increase in chloride channel activity of Y1424A,I1427A CFTR, consistent with the elevated surface expression, and no change in CFTR channel properties. Y14124A showed an intermediate phenotype compared with the double mutation, both in terms of surface expression and chloride channel activity. Metabolic pulse-chase experiments demonstrated that the two mutations did not affect maturation efficiency or protein half-life. Taken together, our data show that there is an internalization signal in the COOH terminus of CFTR that consists of Tyr(1424)-X-X-Ile(1427) where both the tyrosine and the isoleucine are essential residues. This signal regulates CFTR surface expression but not CFTR biogenesis, degradation, or chloride channel function.  相似文献   

5.
Fast transport of axonal vesicles and organelles is a microtubule-associated movement (Griffin, J. W., K. E. Fahnestock, L. Price, and P. N. Hoffman, 1983, J. Neuroscience, 3:557-566; Schnapp, B. J., R. D. Vale, M. P. Sheetz, and T. S. Reese, 1984, Cell, 40:455-462; Allen, R. D., D. G. Weiss, J. H. Hayden, D. T. Brown, H. Fujiwake, and M. Simpson, 1985, J. Cell Biol., 100:1736-1752). Proteins that mediate the interactions of axoplasmic vesicles and microtubules were studied using stable complexes of microtubules and vesicles (MtVC). These complexes formed spontaneously in vitro when taxol-stabilized microtubules were mixed with sonically disrupted axoplasm from the giant axon of the squid Loligo pealei. The isolated MtVCs contain a distinct subset of axoplasmic proteins, and are composed primarily of microtubules and attached membranous vesicles. The MtVC also contains nonmitochondrial ATPase activity. The binding of one high molecular mass polypeptide to the complex is significantly enhanced by ATP or adenyl imidodiphosphate. All of the axoplasmic proteins and ATPase activity that bind to microtubules are found in macromolecular complexes and appear to be vesicle-associated. These data allow the identification of several vesicle-associated proteins of the squid giant axon and suggest that one or more of these polypeptides mediates vesicle binding to microtubules.  相似文献   

6.
The isomeric composition of retinal in membrane-bound and in purified but detergent-free, dark-adapted halorhodopsin was found to be about 70% 13-cis and 30% all-trans. Any illumination increased the all-trans content relative to the dark-adapted state, but blue illumination shifted the isomeric composition more toward all-trans while red illumination of blue-adapted samples shifted it more toward 13-cis. In the presence of chloride this photoisomerization caused the kind of photochromic behavior reported earlier in Smith, S. O., Marvin, M. J., Bogomolni, R. A., and Mathies, R. A. (1984) J. Biol. Chem. 259, 12326-12329, i.e. blue light caused the absorption maximum to move toward longer wavelengths and red light reversed the shift. Only the all-trans chromophore exhibited the complete photocycle described earlier in detergent-solubilized halorhodopsin, and this was the form that could be associated with light-driven chloride transport activity in cell envelope vesicles. In the absence of chloride the spectroscopic changes caused by illumination were much smaller. Reconstitution of bleached preparations with 13-cis- and all-trans-retinal, in the presence and absence of chloride, confirmed that the difference between the absorption maxima of the two isomeric forms of the chromophore is affected by chloride: 13-cis-halorhodopsin absorbs at about 567-568 nm with and without chloride, and the all-trans pigment absorbs near 568 nm in the absence of chloride, but at 578 nm in its presence. The simplest explanation of this finding is that most of the red-shift which accompanies the 13-cis----all-trans transition originates from electrostatic interaction of the retinal with chloride bound in its vicinity.  相似文献   

7.
Expression of insulin metabolic effects can be obtained by anti-receptor antibodies without activation of the tyrosine kinase activity [O'Brien R. M., Soos M. A. and Siddle K. (1987) EMBO J. 6, 4003-4010; Forsayeth J. R., Caro J. F., Sinha M. K., Maddux B. A. and Goldfine I. D. (1987) Proc. natn. Acad. Sci. U.S.A. 84, 34,448-34,514; Ponzio G., Contreres J. O., Debant A., Baron V., Gautier N., Dolais-Kitabgi J. and Rossi B. (1988) EMBO J. 7, 4111-4117; Hawley D. M., Maddux B. A., Patel R. G., Wong K. Y., Mamula P. W., Firestone G. L., Brunetti A., Verspohl E. and Goldfine I. D. (1989) J. biol. Chem. 264, 2438-2444; Soos M. A., O'Brien R. M., Brindle N. P. J., Stigter J. M., Okamoto A. K., Whittaker J. and Siddle K. (1989) Proc. natn. Acad. Sci. U.S.A. 86, 5217-5221.]. Recently, we have proposed that receptor cross-linking is sufficient in itself to stimulate glycogen synthesis, even if aggregation was performed on receptors mutated on Tyr 1162 and Tyr 1163 and thus devoid of tyrosine kinase activity [Debant A., Ponzio G., Clauser E., Contreres J. O. and Rossi B. (1989) Biochemistry 28, 14-17]. The aim of this study was to gain information on the involvement of receptor clustering in the expression of the different insulin biological effects. To this end, we studied the mimetic effects of wheat-germ agglutinin, which is likely to induce receptor aggregation without interacting with the receptor protein moiety. Wheat-germ agglutinin failed to promote DNA synthesis, whereas the lectin behaved as a potent mimicker of insulin on tyrosine aminotransferase activity and amino-acid transport. However, this stimulatory effect did not parallel the activation of receptor autophosphorylation. Our data reinforce the idea that the expression of the metabolic effects of insulin are not strictly dependent on a general tyrosine kinase activation.  相似文献   

8.
The depolarization signal of the diffraction patterns from muscle fibers includes information that differs from that of transmission birefringence experiments. Although both the birefringence studies and the phase shift studies of Yeh et al. (Yeh, Y, and G. Pinsky, 1983, Biophys. J., 42:83-90; Yeh, Y., M. E. Corcoran, R. J. Baskin, and R. L. Lieber, 1983, Biophys. J., 44:343-351) include inseparable intrinsic and form contributions, the present analysis shows that the magnitude of the E-field components of diffracted light is affected only by the intrinsic contribution. We have analyzed the amplitude portion of the data of which the phase shift portion had previously been reported (Yeh, Y., M. E. Corcoran, R. J. Baskin, and R. L. Lieber, 1983, Biophys. J., 44:343-351). For the relaxed-to-rigor transition, these field amplitudes also exhibit changes when ATP concentration is decreased. The observed decrease in optical depolarization upon rigor is consistent with the idea that optically anisotropic elements move away from the myosin thick filament under such conditions.  相似文献   

9.
Proline porter II is rapidly activated when nongrowing bacteria are subjected to a hyperosmotic shift (Grothe, S., Krogsrud, R. L., McClellan, D. J., Milner, J. L., and Wood, J. M. (1986) J. Bacteriol. 166, 253-259). Proline porter II was active in membrane vesicles prepared from bacteria grown under optimal conditions, nutritional stress, or osmotic stress. That activity was: (i) dependent on the presence of the energy sources phenazine methosulphate plus ascorbate or D-lactate; (ii) observed only when a hyperosmotic shift accompanied the transport measurement; (iii) inhibited by glycine betaine in a manner analogous to that observed in whole cells; and (iv) eliminated by lesions in proP. Membrane vesicles were able to transport serine but not glutamine and serine transport was reduced by the hyperosmotic shift. In whole cells, proline porter II activity was supported by glucose and by D-lactate in a strain defective for proline porters I and III and the F1F0-ATPase. Glucose energized proline uptake was eliminated by carbonyl cyanide m-chlorophenylhydrazone and KCN as was serine uptake. These results suggested that proline porter II was respiration-dependent and probably ion-linked. Activation of proline porter II in whole cells by sucrose or NaCl was sustained over 30 min, whereas activation by glycerol was transient. Proline porter II was activated by NaCl and sucrose with a half-time of approximately 1 min in both whole cells and membrane vesicles. Thus, activation of proline porter II was reversible. It occurred at a rate comparable to that of K+ influx and much more rapid than the genetic regulatory responses that follow a hyperosmotic shift.  相似文献   

10.
11.
The effect of the phospholipid acyl chain carbon number on the activity of the branched-chain amino acid transport system of Lactococcus lactis has been investigated. Major fatty acids identified in a total lipid extract of L. lactis membranes are palmitic acid (16:0), oleic acid (18:1) and the cyclopropane-ring containing lactobacillic acid (19 delta). L. lactis membrane vesicles were fused with liposomes prepared from equimolar mixtures of synthetic phosphatidylethanolamine (PE) and phosphatidylcholine (PC) with cis mono-unsaturated acyl chains. The activity of the branched-chain amino acid carrier is determined by the bulk properties of the membrane (Driessen, A.J.M., Zheng, T., In 't Veld, G., Op den Kamp, J.A.F. and Konings, W.N. (1988) Biochemistry 27, 865-872). PE acts as an activator and PC is ineffective. Counterflow and protonmotive-force driven transport of leucine is sensitive to changes in the acyl chain carbon number of both phospholipids and maximal with dioleoyl-PE/dioleoyl-PC. Above the gel to liquid-crystalline phase transition temperature of the lipid species, membrane fluidity decreased with increasing acyl chain carbon number. Our data suggest that the carbon number of the acyl chains of PE and PC determine to a large extent the activity of the transport system. This might be relevant for the interaction of PE with the transport protein. Variations in the acyl chain composition of PC exert a more general effect on transport activity. The acyl chain composition of phospholipids determines the membrane thickness (Lewis, B.A. and Engelman, D.M. (1983) J. Mol. Biol. 166, 211-217). We therefore propose that the degree of matching between the lipid-bilayer and the hydrophobic thickness of the branched-chain amino acid carrier is an important parameter in lipid-protein interactions.  相似文献   

12.
In skeletal muscle both insulin and contractile activity are physiological stimuli for glycogen synthesis, which is thought to result in part from the dephosphorylation and activation of glycogen synthase (GS). PP1G/R(GL)(G(M)) is a glycogen/sarcoplasmic reticulum-associated type 1 phosphatase that was originally postulated to mediate insulin control of glycogen metabolism. However, we recently showed (Suzuki, Y., Lanner, C., Kim, J.-H., Vilardo, P. G., Zhang, H., Jie Yang, J., Cooper, L. D., Steele, M., Kennedy, A., Bock, C., Scrimgeour, A., Lawrence, J. C. Jr., L., and DePaoli-Roach, A. A. (2001) Mol. Cell. Biol. 21, 2683-2694) that insulin activates GS in muscle of R(GL)(G(M)) knockout (KO) mice similarly to the wild type (WT). To determine whether PP1G is involved in glycogen metabolism during muscle contractions, R(GL) KO and overexpressors (OE) were subjected to two models of contraction, in vivo treadmill running and in situ electrical stimulation. Both procedures resulted in a 2-fold increase in the GS -/+ glucose-6-P activity ratio in WT mice, but this response was completely absent in the KO mice. The KO mice, which also have a reduced GS activity associated with significantly reduced basal glycogen levels, exhibited impaired maximal exercise capacity, but contraction-induced activation of glucose transport was unaffected. The R(GL) OE mice are characterized by enhanced GS activity ratio and an approximately 3-4-fold increase in glycogen content in skeletal muscle. These animals were able to tolerate exercise normally. Stimulation of GS and glucose uptake following muscle contraction was not significantly different as compared with WT littermates. These results indicate that although PP1G/R(GL) is not necessary for activation of GS by insulin, it is essential for regulation of glycogen metabolism under basal conditions and in response to contractile activity, and may explain the reduced muscle glycogen content in the R(GL) KO mice, despite the normal insulin activation of GS.  相似文献   

13.
Apolipoprotein A-I (apoAI), the major protein of high density lipoprotein, plays an important role in reverse cholesterol transport via its activity as an ABCA1-dependent acceptor of cellular cholesterol. We reported recently that myeloperoxidase (MPO) modification of apoAI inhibits its ABCA1-dependent cholesterol acceptor activity (Zheng, L., Nukuna, B., Brennan, M. L., Sun, M., Goormastic, M., Settle, M., Schmitt, D., Fu, X., Thomson, L., Fox, P. L., Ischiropoulos, H., Smith, J. D., Kinter, M., and Hazen, S. L. (2004) J. Clin. Invest. 114, 529-541). We also reported that MPO-mediated chlorination preferentially modifies two of the seven tyrosines in apoAI, and loss of parent peptides containing these residues dose-dependently correlates with loss in ABCA1-mediated cholesterol acceptor activity (Zheng, L., Settle, M., Brubaker, G., Schmitt, D., Hazen, S. L., Smith, J. D., and Kinter, M. (2005) J. Biol. Chem. 280, 38-47). To determine whether oxidative modification of apoA-I tyrosine residues was responsible for the MPO-mediated inactivation of cholesterol acceptor activity, we made recombinant apoAI with site-specific substitutions of all seven tyrosine residues to phenylalanine. ApoAI and the tyrosine-free apoAI were equally susceptible to dose-dependent MPO-mediated loss of ABCA1-dependent cholesterol acceptor activity, as well as lipid binding activity. MPO modification altered the migration of apoAI on SDS gels and decreased its alpha-helix content. MPO-induced modification also targeted apoAI tryptophan and lysine residues. Specifically, we detected apoAI tryptophan oxidation to mono- and dihydroxytryptophan and apoAI lysine modification to chlorolysine and 2-aminoadipic acid. Thus, tyrosine modification of apoAI is not required for its MPO-mediated inhibition of cholesterol acceptor activity.  相似文献   

14.
Regulation of organelle transport in melanophores by calcineurin   总被引:12,自引:9,他引:3       下载免费PDF全文
《The Journal of cell biology》1990,111(5):1939-1948
Previous studies have shown that pigment granule dispersion and aggregation in melanophores of the African cichlid, Tilapia mossambica, are regulated by protein phosphorylation and dephosphorylation, respectively (Rozdzial, M. M., and L. T. Haimo. 1986. Cell. 47:1061- 1070). The present studies suggest that calcineurin, a Ca2+/calmodulin- stimulated phosphatase, is the endogenous phosphatase that mediates pigment aggregation in melanophores. Aggregation, but not dispersion, is inhibited by okadaic acid at concentrations consistent with an inhibition of calcineurin activity. Inhibition of aggregation in melanophores that have been BAPTA loaded or treated with calmodulin antagonists implicate Ca2+ and calmodulin, respectively, in this process. Moreover, addition of calcineurin rescues aggregation in lysed melanophores which are otherwise incapable of aggregating pigment. Immunoblotting with an anticalcineurin IgG reveals that calcineurin is a component of the dermis, which contains the melanophores, and indirect immunofluorescence localizes calcineurin specifically to the melanophores. Finally, this antibody, which inhibits calcineurin's phosphatase activity (Tash, J. S., M. Krinks, J. Patel, R. L. Means, C. B. Klee, and A. R. Means. 1988. J. Cell Biol. 106:1625-1633), inhibits aggregation but has no effect on pigment granule dispersion. Together these studies indicate that retrograde transport of pigment granules to the melanophore cell center depends upon the participation of calcineurin.  相似文献   

15.
Two monoclonal antibodies against different epitopes in Escherichia coli ribosomal protein L7/L12 were prepared and characterized as reported previously (Sommer, A., Etchison, J.R., Gavino, G., Zecherle, N., Casiano, C., and Traud, R.R. (1985) J. Biol. Chem. 260, 6522-6527). Both antibodies strongly inhibited polyuridylic acid-directed polyphenylalanine synthesis, ribosome-dependent GTPase activity, and the binding of elongation factor G to the ribosome at mole ratios over ribosomes of 4:1 or less. One epitope was shown to be within residues 1-73 (Ab 1-73) and the other within 74-120 (Ab 74-120). Incubation of 50 S ribosomal subunits or 70 S ribosomes with Ab 1-73, but not with Ab 74-120, leads to a partial loss of L7/L12 from the particle with no loss of any other protein. The experiment was repeated with ribosomes reconstituted with pure radioactive L7/L12 of determined specific activity in order to quantify the L7/L12 in the antibody-treated particle. The protein-deficient core particles isolated by sucrose gradient centrifugation after incubation with Ab 1-73 were found to contain, on average, two copies of L7/L12 and one Ab 1-73. The constancy of this stoichiometry in many experiments and the demonstration of Ab 1-73 on all particles indicate the presence of a homogeneous population of ribosomes, each with only one of the two L7/L12 dimers originally present. The results show a difference in the interactions of the two dimers with the ribosome and present a means of preparing ribosomes with one dimer in a specific binding site. The accompanying paper (Olson, H.M., Sommer, A., Tewari, D. S., Traut, R.R., and Glitz, D.G. (1986) J. Biol. Chem. 261, 6924-6932) shows by immune electron microscopy the location of the two antibody-binding sites and the effect of Ab 1-73 on structure.  相似文献   

16.
Sphingosine inhibited protein kinase C activity and phorbol dibutyrate binding. When the mechanism of inhibition of activity and phorbol dibutyrate binding was investigated in vitro using Triton X-100 mixed micellar methods, sphingosine inhibition was subject to surface dilution; 50% inhibition occurred when sphingosine was equimolar with sn-1,2-dioleoylglycerol (diC18:1) or 40% of the phosphatidylserine (PS) present. Sphingosine inhibition was modulated by Ca2+ and by the mole percent of diC18:1 and PS present. Sphingosine was a competitive inhibitor with respect to diC18:1, phorbol dibutyrate, and Ca2+. Increasing levels of PS markedly reduced inhibition by sphingosine. Since protein kinase C activity shows a cooperative dependence on PS, the kinetic analysis of competitive inhibition was only suggestive. Sphingosine inhibited phorbol dibutyrate binding to protein kinase C but did not cause protein kinase C to dissociate from the mixed micelle surface. Sphingosine addition to human platelets blocked thrombin and sn-1,2-dioctanoylglycerol-dependent phosphorylation of the 40-kDa (47 kDa) dalton protein. Moreover, sphingosine was subject to surface dilution in platelets. The mechanism of sphingosine inhibition is discussed in relation to a previously proposed model of protein kinase C activation. The possible physiological role of sphingosine as a negative effector of protein kinase C is suggested and a plausible cycle for its generation is presented. The potential physiological significance of sphingosine inhibition of protein kinase C is further established in accompanying papers on HL-60 cells (Merrill, A. H., Jr., Sereni, A. M., Stevens, V. L., Hannun, Y. A., Bell, R. M., Kinkade, J. M., Jr. (1986) J. Biol. Chem. 261, 12010-12615) and human neutrophils (Wilson, E., Olcott, M. C., Bell, R. M., Merrill, A. H., Jr., and Lambeth, J. D. (1986) J. Biol. Chem. 261, 12616-12623). These results also suggest that sphingosine will be a useful inhibitor for investigating the function of protein kinase C in vitro and in living cells.  相似文献   

17.
Book Reviews     
《Journal of neurochemistry》1985,45(6):1962-1963
Senile Dementia: Outlook for the Future (Modern Aging Research, Vol. 5) edited by J. Wertheimer and M. Marois. Alan R. Liss
Nucleic Acid Biochemistry and Molecular Biology by W. I. P. Mainwaring, J. H. Parish, J. D. Pickering, and N. H. Mann.
Modulation of Sensorimotor Activity During Alterations in Behavioural States edited by R. Bandler. Alan R. Liss
Monoamine Innervation of Cerebral Cortex (Neurology and Neurobiolgy, Vol. 10) edited by L. Descarries, T. R. Reader, and H. H. Jasper, Alan R. Liss
Neurocommunications: An Introduction by I. C. Whitfield
Ionic Channels of Excitable Membranes by B. Hille
Metabolic Probes of Central Nervous System Activity in Experimental Animals and Man (Magnes Lecture Series, Vol. 1) by Louis Sokoloff
Neurobiology (The Clinical Neurosciences, Vol. V) edited by R. N. Rosenberg, R. G. Grossman, S. S. Schochet Jr., E. R. Heinz, W. D. Willis Jr.  相似文献   

18.
Vacuolar proton-translocating ATPases (V-ATPases) are a family of highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. Although V-ATPases are involved in a number of cellular processes, how the proton pumps are regulated under physiological conditions is not well understood. We have reported that the glycolytic enzyme aldolase mediates V-ATPase assembly and activity by physical association with the proton pump (Lu, M., Holliday, L. S., Zhang, L., Dunn, W. A., and Gluck, S. L. (2001) J. Biol. Chem. 276, 30407-30413 and Lu, M., Sautin, Y., Holliday, L. S., and Gluck, S. L. (2004) J. Biol. Chem. 279, 8732-8739). In this study, we generate aldolase mutants that lack binding to the B subunit of V-ATPase but retain normal catalytic activities. Functional analysis of the aldolase mutants shows that disruption of binding between aldolase and the B subunit of V-ATPase results in disassembly and malfunction of V-ATPase. In contrast, aldolase enzymatic activity is not required for V-ATPase assembly. Taken together, these findings strongly suggest an important role for physical association between aldolase and V-ATPase in the regulation of the proton pump.  相似文献   

19.
A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R., Angulo, J., Nieto, P.M., and Martin-Lomas. M. (2002) The activation of fibroblast growth factors by heparin: synthesis and structural study of rationally modified heparin-like oligosaccharides. Can. J. Chem,. 80, 917-936; Lucas, R., Angulo, J., Nieto, P.M., and Martin-Lomas, M. (2003) Synthesis and structural studies of two new heparin-like hexasaccharides. Org. Biomol. Chem., 1, 2253-2266) and biological data (Angulo, J., Ojeda, R., de Paz, J.L., Lucas, R., Nieto, P.M., Lozano, R.M., Redondo-Horcajo, M., Giménez-Gallego, G., and Martín-Lomas, M. (2004) The activation of fibroblast growth factors (FGFs) by glycosaminoglycans: influence of the sulphation pattern on the biological activity of FGF-1. Chembiochem, 5, 55-61). Fast internal motions observed for the less sulphated compound 2, as compared with 1, may be related to their different behavior in stimulating FGF1-induced mitogenic activity.  相似文献   

20.
Chemical, genetic, and structural studies have defined a critical role for Asp-49 in the calcium-mediated activation of extracellular phospholipases A2 (PLA2). In 1984, a new class of PLA2 was isolated in which this invariant aspartate was replaced with a lysine (Maragnore, J.M., Merutka, G., Cho, W., Welches, W., Kezdy, F.J., and Heinrikson, R.L. (1984) J. Biol. Chem. 259, 13839-13843; Maragnore, J.M., and Heinrikson, R.L. (1986) J. Biol. Chem. 261, 4797-4804). The enzymatic activity of Lys-49 PLA2s has been questioned based on biochemical, mutational, and structural studies (van den Bergh, C.J., Slotboom, A.J., Verheij, H.M., and de Haas, G.H. (1988) Eur. J. Biochem. 176, 353-357). In this paper, we describe the structures of two crystal forms of the Lys-49 PLA2 isolated from the venom of Agkistridon piscivorus piscivorus. The refined models, along with complementary biochemical analysis, clarify the structural basis for the enzymatic inactivity of Lys-49 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号