首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of intracellulary perfused squid giant axons in [3H]leucine demonstrated that newly synthesized proteins appeared in the perfusate after a 45-min lag period. The transfer of labeled proteins was shown to occur steadily over 8 h of incubation, in the presence of an intact axonal plasma membrane as evidenced by the ability of the perfused axon to conduct propagated action potentials over this time-period. Intracellularly perfused RNase did not affect this transfer, whereas extracellularly applied puromycin, which blocked de novo protein synthesis in the glial sheath, prevented the appearance of labeled proteins in the perfusate. The uptake of exogenous 14C-labeled bovine serum albumin (BSA) into the axon had entirely different kinetics than the endogenous glial labeled protein transfer process. The data provide support for the glia-neuron protein transfer hypothesis.  相似文献   

2.
An improved method for internally perfusing the Myxicola giant axon based on removing the axoplasm by dispersing it in KCl-KF salt solutions is described. Proteolytic enzymes are not introduced. With this improved method perfused preparations show long-term stability of their electrical properties and the ability to generate action potentials for many hours. Mean initial values for resting membrane potential, action potential amplitude, and peak inward current were -68 mV, 118 mV, and 3.62 mA/cm2, respectively. Mean resting membrane resistance was 75% of that in intact axons. In one series of voltage clamp experiments, perfused preparations remained excitable for a mean period of 5 1/2 h, but this period could exceed 10 h. 4 min are needed for exchange of internal solutions. At least 50 mM KF is required both in the axoplasm liquefying solution and in the standard perfusate to obtain stable preparations.  相似文献   

3.
Using giant axons of squid, Doryteuthis, available in Hokkaido, Japan, it was shown that axons internally perfused with a dilute sodium salt solution undergo an abrupt transition from a resting to a depolarized state on addition of KCl to an external medium containing CaCl2. Under internal perfusion with a dilute solution of sodium or cesium salt, it was possible to induce abrupt transitions between the two (i.e., resting and depolarized) states of the membrane by changing the temperature. “Giant fluctuations” in the state of the axon membrane were demonstrated at and near the critical points of the axon membrane. These findings are interpreted as supporting the view that an abrupt change in the membrane potential and conductance is an electrochemical manifestation of a phase transition of the membrane macromolecules.  相似文献   

4.
The technique for covalently labeling proteins with 125I-labelled Bolton-Hunter reagent was used to determine the quantities of proteins released from the axoplasmic side of the squid axon membrane. The reagent could be introduced into the interior of the axon by the technique of intracellular perfusion, the radioiodination reaction being carried out in situ. Alternatively, the reaction could be carried out in vitro, i.e., by mixing the reagent with samples of proteins dissolved in the intracellular perfusion fluid collected from the axon. This technique was found to be sensitive enough to permit analysis of a large number of protein samples collected from a single axon. By the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis, it was found that proteins of approx. 56 000 daltons were released into the perfusate when a solution of potassium chloride or potassium bromide was introduced into the interior of an axon. Suppression of axonal excitability was associated with this release of proteins. The significance of these findings in relation to the structure and function of the axon is discussed.  相似文献   

5.
The hydraulic conductivity of the membranes surrounding the giant axon of the squid, Dosidicus gigas, was measured. In some axons the axoplasm was partially removed by suction. Perfusion was then established by insertion of a second pipette. In other axons the axoplasm was left intact and only one pipette was inserted. In both groups hydrostatic pressure was applied by means of a water column in a capillary manometer. Displacement of the meniscus in time gave the rate of fluid flowing across the axon sheath. In both groups osmotic differences across the membrane were established by the addition of a test molecule to the external medium which was seawater. The hydraulic conductivity determined by application of hydrostatic pressure was 10.6 ± 0.8.10-8 cm/sec cm H2O in perfused axons and 3.2 ± 0.6.10-8 cm/sec cm H2O in intact axons. When the driving force was an osmotic pressure gradient the conductivity was 4.5 ± 0.6 x 10-10 cm/sec cm H2O and 4.8 ± 0.9 x 10-10 cm/sec cm H2O in perfused and intact axons, respectively. A comparable result was found when the internal solution was made hyperosmotic. The fluid flow was a linear function of the hydrostatic pressure up to 70 cm of water. Glycerol outflux and membrane conductance were increased 1.6 and 1.1 times by the application of hydrostatic pressure. These increments do not give an explanation of the difference between the filtration coefficients. Other possible explanations are suggested and discussed.  相似文献   

6.
Summary Microelectrode techniques were applied to the rabbit isolated perfused cortical collecting duct to provide an initial quantitation and characterization of the cell membrane and tight junction conductances. Initial studies demonstrated that the fractional resistance (ratio of the resistance of the apical cell membrane to the sum of the resistances of the apical and basolateral membranes) was usually independent of the point along the tubule of microelectrode impalement—implicating little cell-to-cell coupling—supporting the application of quantitative techniques to the cortical collecting duct. It was demonstrated that in the presence of amiloride, either reduction in the luminal pH or the addition of barium to the perfusate selectively reduced the apical membrane potassium conductance. From the changes inG te and fractional resistance upon reducing the luminal pH or addition of barium to the perfusate, the transepithelial, apical membrane, basolateral membrane and tight junction conductances were estimated to be 9.3, 6.7, 8.1 and 6.0 mS cm–2, respectively. Ninety to ninety-five percent of the apical membrane conductance reflected the barium-sensitive potassium conductance in the presence of amiloride with an estimated potassium permeability of 1.1×10–4 cm sec–1. Reduction in the perfusate pH to 4.0 caused a 70% decrease in the apical membrane potassium conductance, implying a blocking site with an acidic group having a pK a near 4.4. It is concluded that both the transcellular and paracellular pathways of the cortical collecting tubule have high ionic conductances, and that the apical membrane conductance primarily reffects a high potassium conductance. Furthermore, both reduction in the perfusate pH and addition of barium to the perfusate selectively block the apical potassium channels, although the site of inhibition likely differs since the two ions display markedly different voltage-dependent blocks of the channel.  相似文献   

7.
Summary We demonstrate that cholesterol can exchange from sonicated lipid vesicles to a perfused squid giant axon membrane and that vesicles with varying cholesterol/phospholipid (C/P) mole ratios can be used to achieve either net loading or net depletion of axon membrane cholesterol. Two types of evidence were obtained which show that net loading or depletion of cholesterol was achieved: (i) changes in the cholesterol/phospholipid (C/P) mole ratios of axons, and (ii) visualization of cholesterol depleted from the preparation by cholesterol-free vesicles by thin-layer chromatography. The C/P mole ratios indicate that cholesterol levels in the preparation were increased or decreased by 30–40%. Increasing or decreasing membrane cholesterol levels were ineffective in altering the Na+ or K+ occurrents in voltage-clamped axons. In addition, we determined that cholesterol flip-flop across the axonal membrane occurred with at 1/2 of 7.3 to 15.3 min.  相似文献   

8.
Passive electrical characteristics of perfused squid axon membrane are investigated. In a previous publication, we reported that the capacitance of intact squid axon membrane is partly frequency dependent. We extended the same measurement to perfused axons. We found that the electrical characteristics of perfused axon membrane are essentially the same as those of intact axons. In this work, we investigated the effects of phospholipase A and pronase on the membrane capacitance. Phospholipase A is known to block the sodium activation and pronase to eliminate the sodium inactivation. Phospholipase A is found to increase the frequency dependent as well as the frequency independent capacitances. Our tentative conclusion is that this enzyme perturbs the lipid structure and decreases its thickness. Pronase is found to increase the frequency dependent capacitance slightly while the capacitance of the lipid layer remains unaltered. Although voltage clamp data indicate that the pronase disrupts the excitatory mechanism extensively, this enzyme has relatively little effect on the overall membrane capacitance.  相似文献   

9.
Passive electrical characteristics of perfused squid axon membrane are investigated. In a previous publication, we reported that the capacitance of intact squid axon membrane is partly frequency dependent. We extended the same measurement to perfused axons. We found that the electrical characteristics of perfused axon membrane are essentially the same as those of intact axons. In this work, we investigated the effects of phospholipase A and pronase on the membrane capacitance. Phospholipase A is known to block the sodium activation and pronase to eliminate the sodium inactivation. Phospholipase A is found to increase the frequency dependent as well as the frequency independent capacitances. Our tentative conclusion is that this enzyme perturbs the lipid structure and decreases its thickness. Pronase is found to increase the frequency dependent capacitance slightly while the capacitance of the lipid layer remains unaltered. Although voltage clamp data indicate that the pronase disrupts the excitatory mechanism extensively, this enzyme has relatively little effect on the overall membrane capacitance.  相似文献   

10.
Summary The effect of pH was tested on the junction between crayfish lateral axons. By means of a glass capillary inserted into one of the axons, one side of the nunction was perfused with solutions of known pH while the junctional resistance,R j, was monitored. Integrity of the gap junction was checked electron microscopically.R j remained unchanged when the pH of the perfusate was lowered from 7.1 to 6.0. However, when the pH of the unperfused side of the junction was lowered by substituting acetate for chloride in the external solution,R j rose, attesting to the integrity of the junction and its capacity to uncouple in the perfused state. We suggest that H+ does not affect the junctional channels directly, but acts through an intermediary which is inactivated or removed by the perfusion.  相似文献   

11.
Proteins in the inner surface of the squid axon membrane were labeled by intracellular perfusion of [3H]N-ethylmaleimide (NEM), which forms covalent bonds with free sulfhydryl groups. The excitability of the axon was unaffected by the [3H]NEM perfusion. After washout of the unbound label, the perfusate was monitored for the release of labeled proteins. Labeled proteins were released from the inner membrane surface by potassium depolarization of the axon only in the presence of external calcium ions. Replacement of the fluoride ion in the perfusion medium by various anions also caused labeled protein release. The order of effectiveness was SCN- greater than Br- greater than Cl- greater than F-. The extent of labeled protein release by the various anions was correlated with their effects on axonal excitability. The significance of these results is discussed.  相似文献   

12.
Giant axons from the squid Dosidicus gigas were internally perfused with rabbit antiaxoplasm antibodies and their effect upon the action potential and the membrane potential was studied. Necessary requirements for the antibodies to affect these parameters in a consistent manner were: (a) removal of the bulk of axoplasm from the perfused zone, accomplished by initially perfusing with a cysteine-rich (400 mM) solution, and (b) addition of small amounts of cysteine (30 mM) to the antibody-containing solution. When these experimental conditions were met, conduction block ensued generally within 3 hr of the first contact of the axon inner surface with the antibody Antineurofilament antibodies and nonspecific antibodies had no effect. External application of antiaxoplasm antibodies had no effect.  相似文献   

13.
Potassium flux ratio in voltage-clamped squid giant axons   总被引:14,自引:10,他引:4       下载免费PDF全文
The potassium flux ratio across the axolemma of internally perfused, voltage-clamped giant axons of Loligo pealei has been evaluated at various membrane potentials and internal potassium concentrations ([K]i). Four different methods were used: (a) independent measurement of one-way influx and efflux of 42K; (b) simultaneous measurement of net K current (IK) and 42K influx; (c) simultaneous measurement of IK and 42K efflux; and (d) measurement of potassium conductance and 42K influx at the potassium equilibrium potential. The reliability of each of these methods is discussed. The average value of the exponent n' in the Hodgkin-Keynes equation ranged from 1.5 at -4mV and 200 mM [K]i to 3.3 at -38 mV and 350 mM [K]i and appeared to be a function of membrane potential and possibly of [K]i. It is concluded that the potassium channel of squid giant axon is a multi-ion, single-file pore with three or more sites.  相似文献   

14.
Summary Lateral axons from the abdominal nerve cord of cray-fish were internally perfused with the calcium receptor calmodulin (CaM) in solutions with low (pCa>7.0) or high (pCa 5.5) calcium concentrations and studied electrophysiologically and morphologically. Results from these experiments show that when the internal solution contains calcium-activated calmodulin (Ca2+-CaM) the junctional resistance between the axons increases from control values of about 60 to 500–600 k in 60 min. In contrast, axons perfused with calmodulin in low calcium solutions maintain their junctional resistance at control levels during the 60-min perfusion. Similar results are obtained when only one or both coupled axons are perfused.The morphological study shows that in the perfused axons the axoplasmic organelles are replaced or grossly perturbed by the perfusion solution up to the region of the synapses. Additionally, in axons perfused with Ca2+-CaM there are regions where the synaptic gap between the membranes decreases from a control 4–6 to 2–3 nm. Both electrophysiological and morphological results can be interpreted as indicating that calcium-activated calmodulin acts directly on the junctional channels to induce their closure.  相似文献   

15.
Electrical properties of the axon membrane were examined under internal perfusion of squid giant axons with a dilute solution of NaF or CsF. The rate of propagation of the action potential was markedly enhanced when NaCl was added to the external CaCl2 solution. The membrane conductance both at rest and during the action potential was increased with increasing Na-concentration in the external medium. In the perfusion zone of these axons, the action potentials in different parts of the membrane were found to terminate in a more-or-less spatially random and temporally irregular fashion. When the electric field outside the axon membrane was examined with hyperfine glass-pipette electrodes, small rectangular potential changes of uniform amplitude were observed. The small potential changes, which resemble those obtained by Bean in EIM-treated lipid bilayer, were interpreted as indicating spatial non-uniformity of the axon membrane during excitation. The importance of long-range electric interaction between different parts of the axon membrane is emphasized.  相似文献   

16.
The effect of perfusate on the contractile activity of an isolated internally perfused heart of Helix pomatia was studied. The changes in heart activity induced by the switching of the perfusate stream were more pronounced in a potassium-free solution when the Na+, K(+)-pump was inactivated. It was found that the decrease in the amplitude of contractions of snail heart by acetylcholine (5.10(-9) M) depends on the treatment of perfusate (Ringer solution) by mechanical vibrations (4, 10, 20, and 50 Hz; 90 dB). In the solution treated with 4 Hz mechanical vibrations, the inhibiting effect of acetylcholine decreased. A similar effect was observed after inactivating the Na+, K(+)-pump by ouabain (10(-4) M). Upon treating the solution by 10, 20, and 50 Hz mechanical vibrations, these changes were not observed. Based on the data, it is suggested that the water medium of the cell can serve as a target through which mechanical vibration can affect the cascade of cell metabolic processes.  相似文献   

17.
The effects of phloretin on membrane ionic conductances have been studied in the giant axon of the squid, Loligo pealei. Phloretin reversibly suppresses the potassium and sodium conductances and modifies their dependence on membrane potential (Em). Its effects on the potassium conductance (GK) are much greater than on the sodium conductance; no effects on sodium inactivation are observed. Internal perfusion of phloretin produces both greater shifts in GK(Em) and greater reductions maximum GK than does external perfusion; the effect of simultaneous internal and external perfusion is little greater than that of internal perfusion alone. Lowering the internal pH, which favors the presence of the neutral species of weakly acidic phloretin (pKa 7.4), potentiates the actions of internally perfused phloretin. Other organic cations with dipole moments similar to phloretin's have little effect on either potassium or sodium conductances in squid axons. These results can be explained by either of two mechanisms; on postulates a phloretin "receptor" near the voltage sensor component of the potassium channel which is accessible to drug molecules applied at either the outer or inner membrane surface and is much more sensitive to the neutral than the negatively charged form of the drug. The other mechanism proposes that neutral phloretin molecules are dispersed in an ordered array in the membrane interior, producing a diffuse dipole field which modifies potassium channel gating. Different experimental results support these two mechanisms, and neither hypothesis can be disproven.  相似文献   

18.
The loss of Na22, K42, and Cl36 from single giant axons of the squid, Loligo pealii, following exposure to an artificial sea water containing these radioisotopes, occurs in two stages, an initial rapid one followed by an exponential decline. The time constants of the latter stage for the 3 ion species are, respectively, 290, 200, and 175 minutes. The outflux of sodium is depressed while that of potassium is accelerated in the absence of oxygen; the emergence of potassium is slowed by cocaine, while that of sodium is unaffected. One cm. ends of the axons take up about twice as much radiosodium as the central segment; this difference in activity is largely preserved during exposure to inactive solution. Such marked differences are not observed with radiopotassium. From the experimental data estimates are given of the influxes and outfluxes of the individual ions. The kinetics of outflux suggests a cortical layer of measureable thickness which contains the ions in different proportions from those in the medium and which governs the rate of emergence of these ions from the axon as though it contained very few but large (relative to ion dimensions) pores.  相似文献   

19.
Herpes simplex virus (HSV) and other alphaherpesviruses must move from sites of latency in ganglia to peripheral epithelial cells. How HSV navigates in neuronal axons is not well understood. Two HSV membrane proteins, gE/gI and US9, are key to understanding the processes by which viral glycoproteins, unenveloped capsids, and enveloped virions are transported toward axon tips. Whether gE/gI and US9 function to promote the loading of viral proteins onto microtubule motors in neuron cell bodies or to tether viral proteins onto microtubule motors within axons is not clear. One impediment to understanding how HSV gE/gI and US9 function in axonal transport relates to observations that gE, gI, or US9 mutants are not absolutely blocked in axonal transport. Mutants are significantly reduced in numbers of capsids and glycoproteins in distal axons, but there are less extensive effects in proximal axons. We constructed HSV recombinants lacking both gE and US9 that transported no detectable capsids and glycoproteins to distal axons and failed to spread from axon tips to adjacent cells. Live-cell imaging of a gE/US9 double mutant that expressed fluorescent capsids and gB demonstrated >90% diminished capsids and gB in medial axons and no evidence for decreased rates of transport, stalling, or increased retrograde transport. Instead, capsids, gB, and enveloped virions failed to enter proximal axons. We concluded that gE/gI and US9 function in neuron cell bodies, in a cooperative fashion, to promote the loading of HSV capsids and vesicles containing glycoproteins and enveloped virions onto microtubule motors or their transport into proximal axons.  相似文献   

20.
Space-clamped squid axons treated with low calcium and computed Hodgkin-Huxley (HH) axons were stimulated by steps of superthreshold current from 101 to 400% of the rheobasic value over a temperature range of 5–27°C. The natural frequency of sustained repetitive firing of real and computed axons depended weakly upon stimulus intensity and strongly upon temperature, with a Q10 of 2.7 (experimental) and 2.6 (computed). For real axons, but not the computed axon, the intervals between the first two spikes were shorter than between subsequent spikes. Constant spike frequencies from 75 Hz at low intensities and temperatures to 330 Hz at high intensities and temperatures were soon achieved. Subthreshold and superthreshold responses were sometimes intermixed in a train of responses from a real axon responding to a constant step of current, but not predicted by HH. The time interval following a spike was always longer than that following a subthreshold oscillation in slightly decalcified real axons, as Huxley and FitzHugh also found for computed axons. There was a bias toward spikes at the beginning of the train and toward subthreshold responses later on. Some repeated patterns were found, every second, third, or fourth response being a spike. Neither the HH equations nor the computed or experimental threshold behaviors show a critical temperature to support a membrane phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号