首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We have purified and partly characterized a calcium-binding protein from the unfertilized egg of the sea urchin Arbacia punctulata. This protein closely resembles the calcium-binding modulator protein of bovine brain in its molecular weight, electrophoretic mobility, amino acid analysis, and peptide map. It activates bovine brain phosphodiesterase in the presence of calcium but has no effect on the phosphodiesterase of the Arbacia egg. Densitometric scanning of acrylamide gels of arbacia egg homogenates shows the modulator protein to represent 0.1% of the total protein of the egg. At 10(-4) M free calcium, the protein binds four calcium ions per 17,000-dalton molecule. We have used a column of rabbit skeletal muscle troponin-I covalently coupled to Sepharose 4B as an affinity column to selectively purify the Arbacia egg calcium-binding protein. This column has also been used to purify bovine brain modulator protein and may prove of general use in isolating similar proteins from other sources. The technique may be particularly helpful when only small quantities of starting material are available.  相似文献   

2.
The mechanisms of protein incorporation and turnover in 9+2 ciliary axonemes are not known. Previous reports of an HSP70-related protein, first in Chlamydomonas flagella and then in sea urchin embryonic cilia, suggested a potential role in protein transport or incorporation. The present study further explores this and other chaperones in axonemes from a representative range of organisms. Two-dimensional gel electrophoresis proved identity between the sea urchin ciliary 78 kDa HSP and a constitutive cytoplasmic HSP70 cognate (pI = 5.71). When isolated flagella from mature sea urchin sperm were analyzed, the same total amount and distribution of 78 kDa protein as in cilia were found. Antigens of similar size were detected in ctenophore comb plate, molluscan gill, and rabbit tracheal cilia. Absent from sea urchin sperm flagella, TCP-1alpha was detected in sea urchin embryonic and rabbit tracheal cilia; the latter also contained HSP90, detected by two distinct antibodies. Tracheal cilia were shown to undergo axonemal protein turnover while tracheal cells mainly synthesized ciliary proteins. TCP-1alpha progressively appeared in regenerating embryonic cilia only as their growth slowed, suggesting a regulatory role in incorporation or turnover. These results demonstrate that chaperones are widely distributed ciliary and flagellar components, potentially related to axonemal protein dynamics.  相似文献   

3.
The present experiments showed that the guinea pig antiserum prepared against the main polypeptides of 14 S dynein from Tetrahymena cilia reacted with sea urchin sperm flagellar dynein and with bovine brain high molecular weight protein to give rise to a precipitin line confluent with that formed between the antiserum and Tetrahymena dynein. Furthermore, it was found that this antiserum also reacted with tubulins from Tetrahymena cilia, sea urchin sperm flagella and bovine brain to give rise to the confluent precipitin line. Among muscle proteins, only actin preparation from rabbit skeletal muscle reacted with the anti-Tetrahymena dynein serum, whereas neither rabbit skeletal muscle myosin, chicken skeletal muscle tropomyosin nor chicken skeletal muscle troponin reacted with the antiserum. These results suggest that dynein and tubulin and probably actin share an antigenic determinant regardless of different protein species and of different animal species. The common antigenic determinant was detected only when the proteins denatured with urea/sodium dodecyl sulfate/beta-mercaptoethanol/N-ethylmaleimide were used, but it was not detected at all when the native proteins were used. This implies that a certain common antigenic determinant which is involved in the precipitin line formation exists in the primary structures of dyneins and tubulins and probably actin, and is hidden inside the tertiary structures of the native protein molecules.  相似文献   

4.
Preliminary data demonstrated that the inhibition of reactivated sperm motility by calcium was correlated with inhibited protein phosphorylation. The inhibition of phosphorylation by Ca2+ was found to be catalyzed by the calmodulin-dependent protein phosphatase (calcineurin). Sperm from dog, pig, and sea urchin contain both the Ca2+-binding B subunit of the enzyme (Mr 15,000) and the calmodulin-binding A subunit with an Mr of 63,000. The sperm A subunit is slightly higher in Mr than reported for other tissues. Inhibition of endogenous calmodulin-dependent protein phosphatase activity with a monospecific antibody revealed the presence of 14 phosphoprotein substrates in sperm for this enzyme. The enzyme was localized to both the flagellum and the postacrosomal region of the sperm head. The flagellar phosphatase activity was quantitatively extracted with 0.6 M KCl from isolated flagella from dog, pig, and sea urchin sperm. All salt-extractable phosphatase activity was inhibited with antibodies against the authentic enzyme. Preincubation of sperm models with the purified phosphatase stimulated curvolinear velocity and lateral head amplitude (important components of hyperactivated swimming patterns) and inhibited beat cross frequency suggesting a role for this enzyme in axonemal function. Our results suggest that calmodulin-dependent protein phosphatase plays a major role in the calcium-dependent regulation of flagellar motility.  相似文献   

5.
A protein factor found within the flagella of Chlamydomonas and sea urchin sperm is capable of stimulating the initiation of calf and chick brain tubulin dimer assembly in vitro.  相似文献   

6.
7.
Ca2+-dependent binding of modulator protein to the particulate fraction was studied. The particulate fraction from one gram of rat brain bound in a Ca2+-dependent fashion 144 microgram of modulator protein, representing more than one third of the total soluble modulator protein in this tissue. The binding site was present in both the mitochondrial and microsomal fractions, the specific activity of the microsomes being the higher. The binding was reversible with a physiological concentration of Ca2+, and was temperature-dependent, and the site can be saturated with modulator protein (4.5 microgram modulator protein per mg of microsomal protein). Tryptic digestion of the membranes caused complete disappearance of the binding activity, but heat-treatment for 5 min at 70 degrees C caused only 40% loss of activity. The binding site may be a known or unknown enzyme(s), the activity of which is regulated by Ca2+ and modulator. Alternatively, this binding site may be a nonenzymic protein that regulates the concentration of free modulator protein in the cell.  相似文献   

8.
When sea urchin sperm is pretreated with sperm-binding protein prepared from the vitelline membrane of eggs of homologous species, it loses its fertilizing capacity entirely without losing its motility. It is not affected at all by sperm-binding protein from heterologous species. Neither agglutination nor acrosome reaction is evoked by the pretreatment. It is suggested that the sea urchin spermatozoon has on the apical part of its head a component which is complementary to the sperm-binding protein of the egg, and that the observed loss of the fertilizing capacity is caused by antedated interaction of this component with sperm-binding protein added before insemination.  相似文献   

9.
Activity of cyclic nucleotide-dependent protein kinase was investigated in flagellar plasma membranes of sea urchin sperm (S. purpuratus). Membranes incubated with [gamma-32P]ATP showed in the presence of 1 microM cAMP an increased phosphorylation in multiple polypeptides. Half maximal response was seen at 0.6 microM of cAMP. In contrast, higher concentrations (100 microM) of cGMP were required to cause the same amount of protein phosphorylation. 80% of the protein kinase activity stimulatable by cAMP was resistant to extraction by 10 mM EGTA and sonication but it was entirely recovered in a detergent-solubilized fraction. Membranes pretreated with 200 microM cAMP, ultracentrifuged and resuspended in buffer solution did not undergo cAMP-stimulated phosphorylation in their polypeptides. This study demonstrates that flagellar plasma membranes isolated from S. purpuratus sea urchin sperm have an endogenous cAMP-dependent protein kinase, which may be bound to the membrane via its regulatory subunit.  相似文献   

10.
Sea urchin spermatozoa are model cells for studying signal transduction events underlying flagellar motility and the acrosome reaction. We previously described the sea urchin sperm receptor for egg jelly 1 (suREJ1) which consists of 1450 amino acids, has one transmembrane segment and binds to the fucose sulfate polymer of egg jelly to induce the sperm acrosome reaction. We also cloned suREJ3 which consists of 2681 amino acids and has 11 putative transmembrane segments. Both these proteins localize to the plasma membrane over the acrosomal vesicle. While cloning suREJ1, we found suREJ2, which consists of 1472 amino acids, has two transmembrane segments and is present in the entire sperm plasma membrane, but is concentrated over the sperm mitochondrion. Experimental evidence suggests that, unlike suREJ1 and suREJ3, suREJ2 does not project extracellularly from the plasma membrane, but is an intracellular plasma membrane protein. All three sea urchin sperm REJ proteins possess a protein module of > 900 amino acids, termed 'the REJ module', that is shared by the human autosomal dominant polycystic kidney disease protein, polycystin-1, and PKDREJ, a testis-specific protein in mammals whose function is unknown. In the present study, we describe the sequence, domain structure and localization of suREJ2 and speculate on its possible function.  相似文献   

11.
Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro acetylation of sea urchin and Chlamydomonas cytoplasmic tubulins in crude extracts. Of all the acetylated polypeptides in the extracts, only alpha-tubulin became antigenic. Among Chlamydomonas tubulin isoforms, the antibodies recognize only the axonemal alpha-tubulin isoform acetylated in vivo on the epsilon-amino group of lysine(s) (L'Hernault, S.W., and J.L. Rosenbaum, 1985, Biochemistry, 24:473-478). The antibodies do not recognize unmodified axonemal alpha-tubulin, unassembled alpha-tubulin present in a flagellar matrix-plus-membrane fraction, or soluble, cytoplasmic alpha-tubulin from Chlamydomonas cell bodies. The antigen was found in protein fractions that contained axonemal microtubules from a variety of sources, including cilia from sea urchin blastulae and Tetrahymena, sperm and testis from Drosophila, and human sperm. In contrast, the antigen was not detected in preparations of soluble, cytoplasmic tubulin, which would not have contained tubulin from stable microtubule arrays such as centrioles, from unfertilized sea urchin eggs, Drosophila embryos, and HeLa cells. Although the acetylated alpha-tubulin recognized by the antibodies is present in axonemes from a variety of sources and may be necessary for axoneme formation, it is not found exclusively in any one subset of morphologically distinct axonemal microtubules. The antigen was found in similar proportions in fractions from sea urchin sperm axonemes enriched for central pair or outer doublet B or outer doublet A microtubules. Therefore the acetylation of alpha-tubulin does not provide the mechanism that specifies the structure of any one class of axonemal microtubules. Preliminary evidence indicates that acetylated alpha-tubulin is not restricted to the axoneme. The antibodies described in this report may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.  相似文献   

12.
Chromatographic fractionation of a crude extract of sea urchin eggs on a hydrophobic column enabled us to find a new 24-kDa microtubule-associated protein (SU-MAP24) that bound tightly to the column and was eluted under alkaline conditions. Biochemical studies using the purified protein showed its direct binding to microtubules reconstituted from tubulin purified from starfish sperm outer fibers. SU-MAP24 promoted tubulin polymerization in a dose-dependent manner. Immunoblotting analysis showed that SU-MAP24 is present in a microtubule protein fraction obtained from a crude extract using taxol, and immunostaining of paraffin-sectioned metaphase eggs showed its localization in the mitotic apparatus. These results show that SU-MAP24 is a newly identified microtubule-associated protein.  相似文献   

13.
Spermatozoa of the mussel Cyprina islandica and the nemertine Malacobdella grossa have been adddd to oocytes and mature eggs of the sea urchin Psammechinus miliaris. No spermatozoa were found to attach to the surface of the mature eggs which also remained unactivated throughout the experiments. Spermatozoa of both species were found to reach the oocyte surface and to become attached there. The interaction between egg and sperm was different in the two species and different from the situation of a sea urchin sperm on the sea urchin oocyte. The nemertine sperm was found to penetrate the cortex of the oocyte in a fashion resembling phagocytosis. The mussel sperm was partly surrounded by thin protrusions from the sea urchin oocyte which extended along a major portion of the sperm head.  相似文献   

14.
A significant fraction of living sea urchin species have completely or partially eliminated the pluteus larval stage and instead develop directly from embryo to adult. Direct developing sea urchins develop from large buoyant eggs. We present data to show that evolution of these large eggs is accompanied by the evolution of spermatozoa with elogate heads, in contrast with the conical sperm heads typical of most echinoids. Two congeneric Australian species, Heliocidaris tuberculata , which develops via a pluteus, and H. erythogramma , a direct developer, were investigated in detail. The sperm of H. erythrogramma have an elongate head (11 μm in length) as compared to the conical sperm head (5.6 μm) of H. tuberculata . Electrophoretic analysis of the sperm histones indicates that no unusual histones or protamines are associated with modified head morphology. Genome sizes were determined by flow cytometry. H. erythrogramma has a haploid genome size of 1.3 pg as compared to a haploid genome size of 0.95 pg for H. tuberculata . Other direct developing echinoids have elongate sperm heads, and co-evolution of gametes is indicated as a common feature of evolution of direct development in echinoids. The most extreme case, the direct developing cidaroid sea urchin, Phyllacanthus parvispinus , possesses the longest and narrowest sperm head (20 μm × 1 μm) ever observed in an echinoid.  相似文献   

15.
Sperm of the sea urchin, Anthocidaris crassispina loses its fertilizing capacity, without losing its motility, on prior exposure to both native and trypsin-digested, univalent Concanavalin A (Con A). Neither agglutination nor acrosome reaction is evoked by ConA treatment. Fluorescein-conjugated ConA binds to the apex of sperm head and to the midpiece. The observed effects of ConA are cancelled by methyl α-d-mannoside. ConA neither binds to sperm of Hemicentrotus pulcherrimus nor renders it infertile. Fertilizability of egg of both species is not reduced by ConA, though formation of the fertilization membrane and 1st cleavage are seriously affected. It is suggested that the species-specific polysaccharide component is situated on the apex of the sea urchin sperm head and constitutes the counterpart to the sperm-binding protein of the vitelline membrane of the egg which belongs to the same species.  相似文献   

16.
The exocytotic acrosome reaction (AR), which is required for fertilization, occurs when sea urchin sperm contact the egg jelly (EJ) layer. Among other physiological changes, increases in adenylyl cyclase activity, cAMP and cAMP-dependent protein kinase (PKA) activity occur coincident with the AR. By using inhibitors of PKA, a permeable analog of cAMP and the phosphodiesterase inhibitor IBMX, we show that PKA activity is required for AR induction by EJ. A minimum of six sperm proteins are phosphorylated by PKA upon exposure to EJ, as detected by a PKA substrate-specific antibody. The phosphorylation of these proteins and the percentage of acrosome reacted sperm can be regulated by PKA modulators. The fucose sulfate polymer (FSP), a major component of EJ, is the molecule that triggers sperm PKA activation. Extracellular Ca(2+) is required for PKA activation. Six sperm proteins phosphorylated by PKA were identified by tandem mass spectrometry (MS/MS) utilizing the emerging sea urchin genome. Based on their identities and localizations in sperm head and flagellum, the putative functions of these proteins in sperm physiology and AR induction are discussed.  相似文献   

17.
A novel Ca2+-binding protein, different from calmodulin, has been purified to homogeneity from the soluble cytoplasmic protein fraction of the egg of the sea urchin, Hemicentrotus pulcherrimus. This protein, designated as 15 kDa protein, shows a Ca2+-dependent mobility shift upon SDS-gel electrophoresis and has Ca2+-binding ability. This protein did not resemble the sea urchin egg calmodulin in either molecular mass or amino acid composition. The 15 kDa protein could not activate cyclic adenosine 3',5'-monophosphate-dependent phosphodiesterase from bovine brain and did not bind to fluphenazine-Sepharose 6B. Antibodies against the 15 kDa protein did not react with sea urchin egg calmodulin. These results suggest that the 15 kDa protein is a novel Ca2+-binding protein in the sea urchin egg.  相似文献   

18.
The localization of protein carboxyl-methylase in sperm tails   总被引:2,自引:0,他引:2       下载免费PDF全文
Protein carboxyl-methylase (PCM), an enzyme known to be involved in exocytotic secretion and chemotaxis, has been studied in rat and rabbit spermatozoa. PCM activity and its substrate methyl acceptor protein(s) (MAP) were demonstrated in the supernate after solubilization of the sperm cell membrane by detergent (Triton X-100). A protein methylesterase that hydrolyzes methyl ester bonds created by PCM was demonstrated in rabbit but not in rat spermatozoa. This enzyme was not solubilized by nonionic detergent. The specific activities of PCM in rat spermatozoa from caput and cauda epididymis were similar and lower than that found in testis. By contrast, MAP substrates were low in testis and increased in parallel with sperm maturation in the epididymis. Multiple MAP were demonstrated in spermatozoa by polyacrylamide gel electrophoresis. The pattern of these proteins was similar in spermatozoa from different portions of the reproductive tract. Fractionation of heads and tails of rat spermatozoa on sucrose gradients indicated that PCM was found exclusively in the tail fraction, whereas MAP was detected both in head and tail fractions. The presence of all the components of the protein carboxyl-methylation system in spermatozoa and the localization of PCM and some of its substrates in the sperm tail are consistent with their involvement in sperm cell motility.  相似文献   

19.
The sea urchin egg has thousands of secretory vesicles known as cortical granules. Upon fertilization, these vesicles undergo a Ca2+-dependent exocytosis. G-protein-linked mechanisms may take place during the egg activation. In somatic cells from mammals, GTP-binding proteins of the Rho family regulate a number of cellular processes, including organization of the actin cytoskeleton. We report here that a crude membrane fraction from homogenates of Strongylocentrotus purpuratus sea urchin eggs, incubated with C3 (which ADP-ribosylates specifically Rho proteins) and [32P]NAD, displayed an [32P]ADP-ribosylated protein of 25 kDa that had the following characteristics: i) identical electrophoretic mobility in SDS-PAGE gels as the [32P]ADP-ribosylated Rho from sea urchin sperm; ii) identical mobility in isoelectro focusing gels as human RhoA; iii) positive cross-reactivity by immunoblotting with an antibody against mammalian RhoA. Thus, unfertilized S. purpuratus eggs contain a mammalian RhoA-like protein. Immunocytochemical analyses indicated that RhoA was localized preferentially to the cortical granules; this was confirmed by experiments of [32P]ADP-ribosylation with C3 in isolated cortical granules. Rho was secreted and retained in the fertilization membrane after insemination or activation with A23187. It was observed that the Rho protein present in the sea urchin sperm acrosome was also secreted during the exocytotic acrosome reaction. Thus, Rho could participate in those processes related to the cortical granules, i.e., in the Ca2+-regulated exocytosis or actin reorganization that accompany the egg activation.  相似文献   

20.
Sea urchin sperm plasma membranes isolated from heads and flagella were used to examine the presence of Gs (stimulatory guanine nucleotide-binding regulatory protein) and small G-proteins. Flagellar plasma membranes incubated with [32P]NAD and cholera toxin (CTX) displayed radiolabeling in a protein of 48 kDa, which was reactive by immunoblotting with a specific antibody against mammalian Gs. CTX-catalyzed [32P]ADP-ribosylation in conjunction with immunoprecipitation with anti-Gs, followed by electrophoresis and autoradiography, revealed one band of 48 kDa. Head plasma membranes, in contrast, did not show substrates for ADP-ribosylation by CTX. In flagellar and head plasma membranes pertussis toxin (PTX) ADP-ribosylated the same protein described previously in membranes from whole sperm; the extent of ADP-ribosylation by PTX was higher in flagellar than in head membranes. Small G-proteins were investigated by [32P]GTP-blotting. Both head and flagellar plasma membranes showed three radiolabeled bands of 28, 25 and 24 kDa. Unlabeled GTP and GDP, but not other nucleotides, interfered with the [α-32P]GTP-binding in a concentration-dependent manner. A monoclonal antibody against human Ras p21 recognized a single protein of 21 kDa only in flagellar membranes. Thus, sea urchin sperm contain a membrane protein that shares characteristics with mammalian Gs and four small G-proteins, including Ras . Gs, Gi and Ras are enriched in flagellar membranes while the other small G-proteins do not display a preferential distribution along the sea urchin sperm plasma membrane. The role of these G-proteins in sea urchin sperm is presently under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号