首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charge-pulse current-relaxation studies have been performed with lipid bilayer membranes in the presence of the hydrophobic ion dipicrylamine. From the analysis of the relaxation times and amplitudes the translocation rate constant ki of dipicrylamine as well as the partition coefficient β between membrane surface and water could be evaluated. In a first series of experiments membranes made from monoolein or dioleoylphosphatidylcholine in a number of different n-alkane solvents were studied, as well as virtually solvent-free bilayer membranes made from monolayers. The thickness d of the hydrocarbon layer of these membranes varied between 5.0 and 2.5 nm. While β was almost insensitive to variations in d, a strong decrease of ki with increasing membrane thickness was found; the observed dependence of ki on d approximately agreed with the theoretically expected influence of membrane thickness on the height of the dielectric barrier. No specific differences between Mueller-Rudin films and solvent-free (Montal-Mueller) membranes other than differences in thickness were found. In a further series of experiments the chemical structure of the lipid was systematically varied (number and position of double bonds in the hydrocarbon chain, nature of the polar head group). The translocation rate constant ki was much larger in phosphatidylethanolamine membranes than in phosphatidylcholine membranes. A strong increase of ki was found when the number of double bonds in the hydrocarbon chain was increased from one to three. These changes were discussed in terms of membrane fluidity and dielectric barrier height. Much higher values of ki were observed in lipids with ester linkage between hydrocarbon chain and glycerol backbone, as compared with the corresponding ether analogs. This finding is qualitatively consistent with determinations of dipolar potentials in monolayers of ester and ether lipids. When cholesterol is added to phosphatidylcholine membranes, the translocation rate constant ki increases up to five-fold, while the partition coefficient β remains virtually constant. The variation of ki in this case can be largely accounted for by a decrease in membrane thickness and a concomitant reduction in dielectric barrier height. In membranes made from the negatively charged lipid phosphatidylserine the partition coefficient of dipicrylamine strongly increased with ionic strength, as expected from the Gouy-Chapman theory of the surface potential.  相似文献   

2.
In this study the effects of experimental modifications of plasma membrane lipid lateral mobility on the electrical membrane properties and cation transport of mouse neuroblastoma cells, clone Neuro-2A, have been studied. Short-term supplementation of a chemically defined growth medium with oleic acid or linoleic acid resulted in an increase in the lateral mobility of lipids as inferred from fluorescence recovery after photobleaching of the lipid probe 3,3′-dioctadecylindocarbocyanide iodide. These changes were accompanied by a marked depolarization of the membrane potential from ?51 mV to ?36 mV, 1.5 h after addition, followed by a slow repolarization. Tracer flux studies, using 86Rb+ as a radioactive tracer for K+, demonstrated that the depolarization was not caused by changes in (Na+ + K+)-ATPase-mediated K+ influx or in the transmembrane K+ gradient. The permeability ratio (PNaPK), determined from electrophysiological measurements, however, increased from 0.10 to 0.27 upon supplementation with oleic acid or linoleic acid. This transient rise of PNaPK was shown by 24Na+ and 86Rb+ flux measurements to be due to both an increase of the Na+ permeability and a decrease of the K+ permeability. None of these effects occurred upon supplementation of the growth medium with stearic acid.  相似文献   

3.
Planar bilayer membranes were formed from monolayers of a series of monounsaturated monoglycerides and lecithins. The hydrocarbon thickness of these membranes, as calculated from the electrical capacity, increases with the length of the fatty acid chain. The specific capacity of monoolein bilayers was found to be 0.745 μF/cm2 which is nearly twice that of a monoolein black film made in the presence of decane, but is close to that obtained after freezing out the solvent from the black film. The hydrocarbon thickness of the bilayer, as calculated with a dielectric constant of 2.1, is considerably less than twice the length of the extended hydrocarbon chain of the monoglyceride.The specific capacity (Cm) of bilayers made from monoolein monolayers showed a negligible voltage dependence, whereas the Cm increased significantly at a voltage of 150 mV in the case of Mueller-Rudin-type monoolein films with n-decane as a solvent.  相似文献   

4.
5.
6.
In order to test the question if a pool of lipophilic ions may exist in black lipid membranes which cannot be detected by electrical relaxation measurements we have performed simultaneously measurements of the optical absorption of a lipophilic ion. The absorbance of membrane-bound dipicrylamine at 410 nm was measured with a sensitive spectrophotometer which can detect absorbance changes ? 4 · 10?5. A minimal concentration of about 6 · 1011 dipicrylamine ions per cm2 of the membrane could be detected with this instrument. The dipicrylamine concentration in the membrane obtained with the optical method Ntopt is compared with the concentrations Ntel obtained from simultaneous electrical relaxation measurements. Ntopt and Ntel agreed at low dipicrylamine concentrations (10?8–10?7 M in the aqueous phase) and showed saturation at higher concentrations (up to 5 · 10?6 M). In the saturation range Ntopt was maximally four times higher than Ntel. The significance of this difference is discussed together with general aspects of the saturation phenomenon.  相似文献   

7.
With the aid of direct microfluorimetric determination of marker organic anions (fluorescein and uranin) accumulated in the proximal tubules the influence of Na+ in the bath medium on the active transport of these anions was studied. Kinetic analysis of the rate dependence of organic acid active transport into tubules on their concentration in the bath medium with a constant Na+ concentration permitted to define values of apparent Km and V for uranin and fluorescein transport in the medium with different Na+ content. It was shown that a decrease of Na+ concentration in the medium increases Km and lowers the V/Km ratio with uncharged V. By varying the Na+ concentration in the medium with a constant concentration of the marker anion the KmNa+ and VNa+ values for fluorescein and uranin transport were determined. A KmNa+ value for fluorescein in twice as much that for uranin. The 1/Km value for uranin transport is a linear function of Na+ concentration, while for fluorescein transport it is a quadratic one. Therefore it is concluded that two Na+ from the medium participate in active transfer of one fluorescein anion whereas only one Na+ from the medium is required for active transfer of one uranin anion. The run out of fluorescein from tubules preloaded with this acid is sharply reinforced by the Na+ omission from the medium. Thus, active transport of organic acids in proximal tubules of frog kidney is Na+-dependent, and Na+ from the medium is likely to participate directly in formation of a transport complex. When Na+ is absent in the medium a carrier fulfils a facilitated diffusion only.  相似文献   

8.
The uptake of d-glucose, 2-aminoisobutyric acid and glycine was studied with intestinal brush border membrane vesicles of a marine herbivorous fish: Boops salpa. The uptake of these three substances is stimulated by an Na+ electrochemical gradient (CoutCin). For glucose, an increase of the electrical membrane potential generated by a concentration gradient of the liposoluble anion, SCN?, increases the Na+-dependent transport. This responsiveness to the membrane potential was confirmed by valinomycin. Differently from glucose, uptake of glycine and 2-aminoisobutyric acid requires, besides the Na+ gradient, the presence of Cl? on the external side of the vesicles. In the absence of Cl?, amino acid uptake is not stimulated by the Na+ gradient and is not influenced by an electrical membrane potential generated by SCN? gradient (Cout>Cin) or by a K+ diffusion potential (Cin>Cout). This Cl? requirement differs from the Na+ requirement, since a Cl? gradient (Cout>Cin) does not result in an accumulation of glycine or 2-aminoisobutyric acid similar to that produced by an Na+ gradient.  相似文献   

9.
Cell membrane potential, Vm, was monitored in rabbit hypertrophic cartilage metatarsals, amphibian proximal tubule and muscle cells during application of 1,25-dihydroxy vitamin D-3, 25-hydroxy vitamin D-3 or cholesterol (10?10M). 1,25-Dihydroxy vitamin D-3 elicited quick variations of Vm (in less than 1 min) in proximal tubular cells (whether injected in the lumen or in peritubular capillaries) and in cartilage. The precursor 25-hydroxy vitamin D-3 and cholesterol produced a small shift of Vm in proximal tubule only when applied from the luminal side, but this change was significantly smaller than that observed with 1,25-dihydroxy vitamin D-3. Muscle cells were unresponsive to both metabolites and cholesterol. It is concluded that rapid effects of 1,25-dihydroxy vitamin D-3 on Vm, in target cells, are specific, most likely due to permeability changes and not related to nuclear protein synthesis; they may contribute to early modulation of cell function.  相似文献   

10.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg / ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t12) for at least one-third of the cell cholesterol of 3.2 ± 0.6 and 14.3 ± 1.5 h, respectively. Plasma membrane vesicles (0.5–5.0 μm diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t12 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 ± 0.5 and 11.2 ± 0.7 h, respectively. These t12 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rate indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 ± 0.1 and 2.9 ± 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t12 values for cholesterol efflux from these cell lines.  相似文献   

11.
An explicit set of general methods for the experimental determination of the rates k1 and k2 of consecutive pseudo-first-order reactions is described and discussed. These rely on the direct simultaneous analytical quantitation of the starting material, intermediate, and product of the reaction, and thus differ from present techniques based on measurement of coreactant consumption or coproduct appearance. The quantity kenv = k1k2(k1 + k2) is shown to define a good “envelope” approximation to product formation according to the simple law 100% [1 ? exp(?kenvt)]. The theory of envelopes is useful for comparing overall rates of reactions with widely differing values of κ = k2k1. The kinetic pattern of thiolysis of dithiasuccinoyl amino acids to carbamoyl disulfide intermediates to product free amino acids is analyzed and shown to agree quantitatively with theory.  相似文献   

12.
The active transport of neutral amino acids into Streptomyces hydrogenans is inhibited by external Na+. There is no indication that in these cells amino acid accumulation is driven by an inward gradient of Na+. The extent of transport inhibition by Na+ depends on the nature of the amino acid. It decreases with increasing chain length of the amino acid molecules i.e. with increasing non-polar properties of the side chain. Kinetic studies show that Na+ competes with the amino acid for a binding site at the amino acid carrier. There is a close relation between the Ki values for Na+ and the number of C atoms of the amino acids. Other cations also inhibit neutral amino acid uptake competitively; the effectiveness decreases in the order Li+ > Na+ > K+ > Rb+ > Cs+. Anions do not have a significant effect on the uptake of neutral amino acids. After prolonged incubation of the cells with 150 mM Na+, in addition to the competitive inhibition of transport Na+ induces an increase in membrane permeability for amino acids.  相似文献   

13.
Exposure of intact brush border membrane vesicles of hog kidney cortex to cholesterol oxidase resulted in 24% oxidation of membrane cholesterol compared with more than 95% oxidation of cholesterol in lipids isolated from membranes, showing that cholesterol is asymmetrically distributed in membranes. Phospholipase C, hydrolyzed 76% of phosphatidylcholine and 10–12% phosphatidylethanolamine while phosphatidylserine was not hydrolyzed, thus indicating that majority of phosphatidylcholine is present on the outer surface of these vesicles while phosphatidylethanolamine and phosphatidylserine are present on the inner surface. Methylation of phospholipids in brush border membrane with S-adenosyl-[methyl-3H]methionine resulted in the formation of phosphatidyl-N-monomethylethanolamine, phosphatidyl-N,N-dimethylethanolamine and phosphatidylcholine from endogenous phosphatidylethanolamine. The Km for S-adenosylmethionine was 1·10?4 M with an optimum pH 9.0 for the formation of all three methyl derivatives. Mg2+ was without any effect between pH 5 to 10. Addition of exogenous mono- and dimethylphosphatidylethanolamine derivatives enhanced methyl group incorporation by 4–5-fold as compared to the addition of phosphatidylethanolamine. The conversion of endogenous phosphatidylethanolamine to phosphatidyl-N-monomethylethanolamine or addition of exogenous phosphatidylmonomethylethanolamine to brush border membrane did not result in a change in bulk membrane fluidity as determined by fluorescence polarization of diphenylhexatriene. Methylation of phosphatidylethanolamine in brush border membrane did not affect the Na+-dependent uptake of either d-glucose or phosphate, although the accessibility of cholesterol in membrane to cholesterol oxidase was diminished by 21%, presumably due to altered flip-flop movement of cholesterol in the membrane.  相似文献   

14.
(1)‘Uptake’ of phlorizin by intestinal brush border membrane vesicles is stimulated, much as that of d-glucose, by the simultaneous presence of Naout+ and Δψ?0. However, phlorizin contrary to d-glucose, fulfills all criteria of a non-translocated ligand (i.e., of a fully competitive inhibitor) of the Na+,d-glucose cotransporter. (2) The stoicheiometry of Na+/phlorizin binding is 1, as shown by a Hill coefficient of approx. 1 in the Naout+-dependence of phlorizin binding. (3) The preferred order of binding at Δψ?0 is Na+ first, phlorizin second (4) The velocity of association of phlorizin to the cotransporter, but not the velocity of its dissociation therefrom, responds to Δψ. These observations while agreeing with the effect of Δψ?0 on the Kd of phlorizin binding in the steady-state time range, also confirm that the mobile part of the cotransporter bears a negative charge of 1. (5) A model is proposed describing the Na+,Δψ-dependent interaction of phlorizin with the cotransporter and agreeing with a more general model of Na+,d-glucose cotransport. (6) The kon, koff and Kd constants of phlorizin interaction with the Na+,d-glucose cotransporter are smaller in the kidney than in the small-intestinal brush border membrane, which results in a number of quantitative differences in the overall behaviour of the two systems.  相似文献   

15.
The kinetics of fructose uptake was determined in perfused rat liver during steady-state fructose elimination. On the basis of the corresponding values of fructose concentration in the affluent and in the effluent medium, and the fructose and ATP concentration in biopsies, the kinetics of membrane transport and intracellular phosphorylation in the intact organ was calculated according to a model system. Carrier-mediated fructose transport has a high Km (67 mM) and V (30 μmoles · min?1 ·g?1). The calculated kinetic constants of the intracellular phosphorylation were compared with values obtained with an acid-treated rat liver high speed supernatant (values given in parentheses). Km with fructose 1.0 mM (0.7 mM), Km with ATP 0.54 mM (0.37 mM), V 10.3 μmoles · min?1 · g?1 (10.1 μmoles · min?1 · g?1, calculated on the basis of the highest measured rate of fructose uptake correcting the ATP concentration to saturating values). The kinetics of fructose uptake reveals that at Physiological fructose concentrations the membrane transport limits the rate of fructose uptake, thus protecting the liver from severe depletion of adenine nucleotides.  相似文献   

16.
The temperature-dependent relationship between K+ active influx, Mg2+-ATPase activity, transmembrane potential (ΔΨ) and the membrane lipid composition has been investigated in mycoplasma PG3. Native organisms were grown in a medium containing 10 μg/ml cholesterol and either oleic plus palmitic (chol (+), O + P) or elaidic (chol (+), E) acids. Adapted cells were grown in a medium free of exogenous cholesterol and supplemented with elaidic acid (chol (?), E).Arrhenius plots of 42K+ active influx gave a linear relationship for (chol (+), O + P) cells (EA = ?9 kcal). On the other hand, when oleic plus palmitic acids are replaced by elaidic acid, an upward discontinuity appears between 28 and 30°C, which is associated with a large increase in the apparent activation energy of the process (t > 30°C, EA = ?24 kcal; t < 30°C, EA = ?40 kcal).Finally, a biphasic response with a break at approx. 23°C (EA = ?7 kcal, t > 23°C; EA = ?44 kcal, t < 23°C) is observed for (chol (?), E) organisms. From the lack of correspondence between these effects on the K+ influx and the temperature dependence of both the Mg2+-ATPase activity and ΔΨ, it is suggested that changes in the membrane lipid composition affect the K+ transport at the level of the K+ carrier itself.Differential scanning calorimetry, steady-state fluorescence polarization of diphenylhexatriene and freeze-fracture electron microscopy experiments further suggest that the effect is largely due to modifications of the membrane microviscosity and that the K+ carrier is associated with the most fluid lipid species present in the membrane.  相似文献   

17.
The uptake of l-glutamic acid into brush-border membrane vesicles isolated from rat renal proximal tubules is Na+-dependent. In contrast to Na+-dependent uptake of d-glucose, pre-equilibration of the vesicles with K+ stimulates l-glutamic acid uptake. Imposition of a K+ gradient ([Ki+] > [Ko+]) further enhances Na+-dependent l-glutamic acid uptake, but leaves K+-dependent glucose transport unchanged. If K+ is present only at the outside of the vesicles, transport is inhibited. Intravesicular Rb+ and, to a lesser extent, Cs+ can replace intravesicular K+ to stimulate l-glutamic acid uptake. Changes in membrane potential incurred by the imposition of an H+-diffusion potential or anion replacement markedly affect Na+-dependent glutamic acid uptake only in the presence of K+. Experiments with a potential-sensitive cyanine dye also indicate that, in the presence of intravesicular K+ a charge movement is involved in Na+-dependent transport of l-glutamic acid.The data indicate that Na+-dependent l-glutamic acid transport can be additionally energized by a K+ gradient. Furthermore, intravesicular K+ renders Na+-dependent l-glutamic acid transport sensitive to changes in the transmembrane electrical potential difference.  相似文献   

18.
The in vitro incorporation of cytochrome b5 into purified plasma membranes was investigated by biochemical and immunological methods. Plasma membrane preparations incorporated three times less cytochrome b5 than did microsomal preparations; 60% of this cytochrome b5 could not be reduced by the NADH-cytochrome b5 reductase and was considered as being bound to the plasma membrane. The morphological observations made after the immunochemical labeling of cytochrome b5 clearly showed a good but asymmetrical distribution of the ferritin labeling: only the inner face of the plasma membrane incorporated cytochrome b5. These results are discussed with respect to theories which concern the subcellular membrane relationships in the cell.  相似文献   

19.
Flufenamate, a non-steroidal anti-inflammatory drug, is a powerful inhibitor of anion transport in the human erythrocyte (I50 = 6·10?7M). The concentration dependence of the binding to ghosts reveals two saturable components. [14C]Flufenamate binds with high affinity (Kd1 = 1.2·10?7M) to 8.5·105 sites per cell (the same value as the number of band 3 protein per cell); it also binds, with lower affinity (Kd2 = 10?4M) to a second set of sites (4.6·107 per cell). Pretreatment of cells with 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS), a specific inhibitor of anion transport, prevents [14C]flufenamate binding only to high affinity sites. These results suggest that high affinity sites are located on the band 3 protein involved in anion transport. Extracellular chymotrypsin and pronase at low concentration cleave the 95 kDa band 3 into 60 kDa and 35 kDa fragments without affecting either anion transport or [14C]flufenamate binding. Splitting by trypsin at the inner membrane surface of the 60 kDa chymotryptic fragment into 17 kDa transmembrane fragment and 40 kDa water-soluble fragment does not affect [14C]flufenamate binding. In contrast degradation at the outer membrane surface of the 35 kDa fragment by high concentration of pronase or papain decreases both anion transport capacity and number of high affinity binding sites for [14C]flufenamate. Thus it appears that 35 kDa peptide is necessary for both anion transport and binding of the inhibitors and that the binding site is located in the membrane-associated domain of the band 3 protein.  相似文献   

20.
A maximal rate of the ouabain-sensitive 204Tl influx in human erythrocytes can be attained at trace concentrations of Tl+ in Mg2+ isotonic media free of K+ and Na+. The maximal influx of Tl+ from isotonic Mg(NO3)2 at 20°C and pH 7.4 was 0.45 mM · 1?1 · h?1 with a Km of 0.025 mM. In contrast to the active influx of Tl+, the passive Tl+ fluxes were neither saturated nor influenced by external cations in the range of concentrations of Tl+ and K+ studied. The rate constants of Tl+ passive fluxes in human and cat erythrocytes can be related to pH by the equation log kin(out) = –A + B · pH, where A and B are empirical constants for particular conditions. The apparent activation energy was 16 and 11 kcal/mol in sulphate and nitrate media, respectively. Tl+ and the alkali metal cations seem to overcome a common barrier in the erythrocyte membrane. Nevertheless, the rate of the passive penetration of Tl+ is about two orders of magnitude faster than those of K+ or Rb+. An extra non-Coulombic interaction between Tl+ and membrane ligands appears to be involved providing an accumulation of Tl+ somewhere in the vicinity of the membrane barrier and increasing the diffusion fluxes of Tl+ in both directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号