首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between nitrate which is formed from inhaled nitrogen dioxide, a common air pollutant, and changes in fatty acid metabolism of phosphatidylserine in rat erythrocytes has been examined. When erythrocytes were incubated at 37°C for 60 min with fatty acid, the incorporation rate of [1-14C]arachidonic acid and [9,10-3H]palmitic acid into phosphatidylserine was 15% (80 pmol/h per μmol lipid phosphorus) and 20% (12 pmol/h per μmol lipid phosphorus) of those into phosphatidylethanolamine, respectively. By the addition of 1.0 mM sodium nitrate or 0.5 μM ionophore A23187 to the incubation mixture, the rate of incorporation of both arachidonic acid and palmitic acid into phosphatidylethanolamine was stimulated 1.45-fold. On the other hand, the incorporation of palmitic acid into phosphatidylserine was little affected, while that of arachidonic acid was stimulated 1.35-fold. An increase in arachidonic acid of phosphatidylserine was also found by the addition of nitrate or ionophore A23187. This increase was dependent on the concentration of extracellular calcium and observed by the addition of other chaotropic anions in the order SCN >CIO4? > NO3?. It seems likely, therefore, that nitrate causes changes in erythrocyte membranes to facilitate calcium uptake. Increasing the concentration of intracellular calcium may cause stimulation of acyl-CoA:lysophospholipid acyltransferase and/or endogenous phospholipase A2.  相似文献   

2.
Niu SL  Litman BJ 《Biophysical journal》2002,83(6):3408-3415
Lateral domain or raft formation in biological membranes is often discussed in terms of cholesterol-lipid interactions. Preferential interactions of cholesterol with lipids, varying in headgroup and acyl chain unsaturation, were studied by measuring the partition coefficient for cholesterol in unilamellar vesicles. A novel vesicle-cyclodextrin system was used, which precludes the possibility of cross-contamination between donor-acceptor vesicles or the need to modify one of the vesicle populations. Variation in phospholipid headgroup resulted in cholesterol partitioning in the order of sphingomyelin (SM) > phosphatidylserine > phosphatidylcholine (PC) > phosphatidylenthanolamine (PE), spanning a range of partition DeltaG of -1181 cal/mol to +683 cal/mol for SM and PE, respectively. Among the acyl chains examined, the order of cholesterol partitioning was 18:0(stearic acid),18:1n-9(oleic acid) PC > di18:1n-9PC > di18:1n-12(petroselenic acid) PC > di18:2n-6(linoleic acid) PC > 16:0(palmitic acid),22:6n-3(DHA) PC > di18:3n-3(alpha-linolenic acid) PC > di22:6n-3PC with a range in partition DeltaG of 913 cal/mol. Our results suggest that the large differences observed in cholesterol-lipid interactions contribute to the forces responsible for lateral domain formation in plasma membranes. These differences may also be responsible for the heterogeneous cholesterol distribution in cellular membranes, where cholesterol is highly enriched in plasma membranes and relatively depleted in intracellular membranes.  相似文献   

3.
The thermal stability of excitation transfer from pigment proteins to the Photosystem II reaction center of Nerium oleander adjusts by 10 Celsius degrees when cloned plants grown at 20°C/15°C, day/night growth temperatures are shifted to 45°C/32°C growth temperature or vice versa. Concomitant with this adjustment is a decrease in the fluidity of thylakoid membrane polar lipids as determined by spin labeling. The results are consistent with the hypothesis that there is a limiting maximum fluidity compatible with maintenance of native membrane structure and function. This limiting fluidity was about the same as for a number of other species which exhibit a range of thermal stabilities. Inversely correlated shifts in lipid fluidity and thermal stability occurred during the time course of acclimation of N. oleander to new growth temperatures. Thus, the temperature at which the limiting fluidity was reached changed during acclimation while the limiting fluidity remained constant. Although the relative proportion of the major classes of membrane polar lipids remained constant during adjustments in fluidity, large changes occured in the abundance of specific fatty acids. These changes were different for the phospho- and galacto-lipids suggesting that the fatty acid composition of these two lipid classes is regulated by different mechanisms. Comparisons between membrane lipid fluidity and fatty acid composition indicate that fluidity is not a simple linear function of fatty acid composition.  相似文献   

4.
The effect of benzyl viologen (a stimulator of free radical production in cells) on lipid composition, fluidity and enzymes involved in both polyunsaturated fatty acid biosynthesis and cholesterol metabolism was studied in liver microsomal membrane of adult rats. In viologen-treated animals, a significant decrease in the levels of free cholesterol and cholesteryl esters, accompanied to a decrease at the free cholesterol/phospholipid ratio, were observed. The levels of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and acyl-coenzyme A : cholesterol acyltransferase (ACAT) were also lower in viologen-treated rats than in controls. Linoleic and arachidonic acids were both severely lower while docosatetraenoic, docosapentaenoic and docosahexaenoic acids were significantly higher as compared with controls. Furthermore, a decrease in monounsaturated/saturated ratio was found. In addition, the treatment evoked a depression in the fatty acid desaturation complex, with a diminish of 9, 9, and 5 desaturase activities in microsomal membrane.It was concluded that changes in phospholipid microsomal fatty acid and cholesterol content could be directly responsible for changes in membrane fluidity and function, and that extensive yield of docosahexaenoic acid may serve to maintain the physical characteristics of particular domains against oxidative stress caused by benzyl viologen treatment.  相似文献   

5.
6.
The effect of modifying fatty acyl composition of cellular membrane phospholipids on receptor-mediated intracellular free Ca2+ concentration ([Ca2+]i) increase was investigated in a leukemic T cell line (JURKAT). After growing for 72 h in medium supplemented with unsaturated fatty acids (UFAs) and α-tocopherol, the fatty acyl composition of membrane phospholipids in JURKAT cells was extensively modified. Each respective fatty acid supplemented in the culture medium was readily incorporated into phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine in the JURKAT cells. The total n ? 6 fatty acyl content was markedly reduced in phosphatidylinositol and phosphatidylcholine of cells grown in the presence of n ? 3 fatty acids (α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid). Conversely, in the presence of n ? 6 fatty acids (linoleic acid and arachidonic acid), the total n ? 3 fatty acyl content was reduced in all the phospholipids examined. In n ? 3 and n ? 6 polyunsaturated fatty acid (PUFA) modified JURKAT cells, the total n ? 9 monounsaturated fatty acyl content in the phospholipids were markedly reduced. Changing the fatty acyl composition of membrane phospholipids in the JURKAT cells appear to have no affect on the presentation of the T cell receptor/CD3 complex or the binding of anti-CD3 antibodies (OKT3) to the CD3 complex. However, the peak increase in [Ca2+]i and the prolonged sustained phase elicited by OKT3 activation were suppressed in n ? 3 and n ? 6 PUFA but not in n ? 9 monounsaturated fatty acid modified cells. In Ca2+ free medium, OKT3-induced transient increase in [Ca2+]i, representing Ca2+ release from the inositol 1,4,5-triphosphate-sensitive Ca2+ stores, were similar in control and UFA modified cells. Using Mn2+ entry as an index of plasma membrane Ca2+ permeability, the rate of fura-2 fluorescence quenching as a result of Mn2+ influx stimulated by OKT3 in n ? 9 monounsaturated fatty acid modified cells was similar to control cells, but the rates in n ? 3 and n ? 6 PUFA modified cells were significantly lower. These results suggest that receptor-mediated Ca2+ influx in JURKAT cells is sensitive to changes in the fatty acyl composition of membrane phospholipids and n ? 9 monounsaturated fatty acids appears to be important for the maintenance of a functional Ca2+ influx mechanism.  相似文献   

7.
The vinyl ether bond of plasmalogens could be among the first target of free radicals attack. Consequently, because of their location in the membranes of cells, plasmalogens represent a first shield against oxidative damages by protecting other macromolecules and are often considered as antioxidant molecules. However, under oxidative conditions their disruption leads to the release of fatty aldehydes. In this paper, we showed using gas chromatography-mass spectrometry (GC-MS) analyses that fatty aldehydes released from plasmalogens after oxidation (UV irradiation and Fe2+/ascorbate) of cerebral cortex homogenates can generate covalent modifications of endogenous macromolecules such as phosphatidylethanolamine (PE), like the very reactive and toxic malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). These newly formed Schiff base adducts could be responsible for deleterious effects on cells thus making the protective role of plasmalogens potentially questionable.  相似文献   

8.
The membrane lipid composition of living cells generally adjusts to the prevailing environmental and physiological conditions. In this study, membrane activity and lipid composition of the Gram-negative bacterium Vibrio sp. DSM14379, grown aerobically in a peptone-yeast extract medium supplemented with 0.5, 1.76, 3, 5 or 10% (w/v) NaCl, was determined. The ability of the membrane to reduce a spin label was studied by EPR spectroscopy under different salt concentrations in cell suspensions labeled with TEMPON. For lipid composition studies, cells were harvested in a late exponential phase and lipids were extracted with chloroform-methanol-water, 1:2:0.8 (v/v). The lipid polar head group and acyl chain compositions were determined by thin-layer and gas-liquid chromatographies. 31P-NMR spectroscopy was used to study the phase behaviour of the cell lipid extracts with 20 wt.% water contents in a temperature range from −10 to 50 °C. The results indicate that the ability of the membrane to reduce the spin label was highest at optimal salt concentrations. The composition of both polar head groups and acyl chains changed markedly with increasing salinity. The fractions of 16:0, 16:1 and 18:0 acyl chains increased while the fraction of 18:1 acyl chains decreased with increasing salinity. The phosphatidylethanolamine fraction correlated inversely with the lysophosphatidylethanolamine fraction, with phosphatidylethanolamine exhibiting a minimum, and lysophosphatidylethanolamine a maximum, at the optimum growth rate. The fraction of lysophosphatidylethanolamine was surprisingly high in the lipid extracts. This lipid can form normal micellar and hexagonal phases and it was found that all lipid extracts form a mixture of lamellar and normal isotropic liquid crystalline phases. This is an anomalous behaviour since the nonlamellar phases formed by total lipid extracts are generally of the reversed type.  相似文献   

9.
We use fluorescence microscopy to directly observe liquid phases in giant unilamellar vesicles. We find that a long list of ternary mixtures of high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol produce liquid domains. For one model mixture in particular, DPPC/DOPC/Chol, we have mapped phase boundaries for the full ternary system. For this mixture we observe two coexisting liquid phases over a wide range of lipid composition and temperature, with one phase rich in the unsaturated lipid and the other rich in the saturated lipid and cholesterol. We find a simple relationship between chain melting temperature and miscibility transition temperature that holds for both phosphatidylcholine and sphingomyelin lipids. We experimentally cross miscibility boundaries both by changing temperature and by the depletion of cholesterol with beta-cyclodextrin. Liquid domains in vesicles exhibit interesting behavior: they collide and coalesce, can finger into stripes, and can bulge out of the vesicle. To date, we have not observed macroscopic separation of liquid phases in only binary lipid mixtures.  相似文献   

10.
(11E)-13-Oxo-15,16-dinorlabda-8(20),11-dien-19-oic Acid (1), obtained either from the stem bark of Thuja standishii or readily prepared in larger quantities from the related constituent 2, was found to significantly reduce the formation of papilloma in an in vivo two-stage mouse-skin-carcinogenesis model. Carcinogenesis was initiated by skin exposure to UV-B irradiation and promoted by topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA). Oral administration of 1, starting one week before and ending one week after irradiation, exhibited remarkable effects. First, papilloma formation started two weeks later than in the control group (lacking 1). Second, the average number of skin papilloma after 20 weeks was reduced by ca. 50% in the test group relative to the control.  相似文献   

11.
The mammalian pineal gland is a prominent secretory organ with a high metabolic activity. Melatonin (N-acetyl-5-methoxytryptamine), the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. Approximately 25% of the total fatty acids present in the rat pineal lipids are represented by arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3). These very long chain polyunsaturated fatty acids play important roles in the pineal gland. In addition to the production of melatonin, the mammalian pineal gland is able of convert these polyunsaturated fatty acids into bioactive lipid mediators. Lipoxygenation is the principal lipoxygenase (LOX) activity observed in the rat pineal gland. Lipoxygenation in the pineal gland is exceptional because no other brain regions express significant LOX activities under normal physiological conditions. The rat pineal gland expresses both 12- and 15-lipoxygenase (LOX) activities, producing 12- and 15-hydroperoxyeicosatetraenoic acid (12- and 15-HpETE) from arachidonic acid and 14- and 17-hydroxydocosahexaenoic acid (14- and 17-HdoHE) from docosahexaenoic acid, respectively. The rat pineal also produces hepoxilins via LOX pathways. The hepoxilins are bioactive epoxy-hydroxy products of the arachidonic acid metabolism via the 12S-lipoxygenase (12S-LOX) pathway. The two key pineal biochemical functions, lipoxygenation and melatonin synthesis, may be synergistically regulated by the status of n-3 essential fatty acids.  相似文献   

12.
Dispersed mouse and guinea-pig pancreatic acini were used to examine the effects of the inositol analogue, γ-hexachlorocyclohexane (lindane) on agonist-stimulated amylase secretion. Secretion from mouse acini in response to carbachol and cholecystokinin octapeptide (CCK-8) was reduced by lindane. Similarly, amylase release from guinea-pig acini stimulated by carbachol was abolished by lindane. These acini, however, still remained responsive to dibutyryl-cAMP with only a slightly diminished secretion to this agent. Inositol phospholipid synthesis and hydrolysis was stimulated in mouse acini by both carbachol and CCK-8. Although hydrolysis of these lipids in response to CCK-8 was reduced by only 18%, stimulation of inositol phospholipid synthesis by either agonist was abolished by lindane. Dose-response curves for inositol phospholipid synthesis stimulated by carbachol and CCK-8 in mouse acini were biphasic and superimposable with those of amylase secretion. In contrast, the dose-response curve for phosphoinositide hydrolysis was sigmoid and clearly separable from that of synthesis. Reducing the external Ca2+ concentration caused the dose-response curves for carbachol- and CCK-8-induced inositol phospholipid synthesis to be displaced to the right, as has been observed for amylase secretion. A23187 was also found to induce amylase secretion and inositol phospholipid synthesis, and both of these responses were inhibited by lindane. Amylase secretion and inositol phospholipid synthesis may, therefore, be closely related events in the exocrine pancreas. Lindane may provide a valuable tool with which to determine the role of inositol phospholipid metabolism in stimulus-response coupling.  相似文献   

13.
The phosphatidylglycerol deficient ΔpgsA mutant of Synechocystis PCC6803 provided a unique experimental system for investigating in vivo retailoring of exogenously added dioleoylphosphatidylglycerol in phosphatidylglycerol-depleted cells. Gas chromatographic analysis of fatty acid composition suggested that diacyl-phosphatidylglycerols were synthesized from the artificial synthetic precursor. The formation of new, retailored lipid species was confirmed by negative-ion electrospray ionization–Fourier-transform ion cyclotron resonance and ion trap tandem mass spectrometry. Various isomeric diacyl-phosphatidylglycerols were identified indicating transesterification of the exogenously added dioleoylphosphatidyl-glycerol at the sn-1 or sn-2 positions. Polyunsaturated fatty acids were incorporated selectively into the sn-1 position. Our experiments with Synechocystis PCC6803/ΔpgsA mutant cells demonstrated lipid remodeling in a prokaryotic photosynthetic bacterium. Our data suggest that the remodeling of diacylphosphatidylglycerol likely involves reactions catalyzed by phospholipase A1 and A2 or acyl-hydrolase, lysophosphatidylglycerol acyltransferase and acyl-lipid desaturases.  相似文献   

14.
Vibrio splendidus is a marine bacterium often considered as a threat in aquaculture hatcheries where it is responsible for mass mortality events, notably of bivalves' larvae. This bacterium is highly adapted to dynamic salty ecosystems where it has become an opportunistic and resistant species. To characterize their membranes as a first and necessary step toward studying bacterial interactions with diverse molecules, we established a labelling protocol for in vivo 2H solid-state nuclear magnetic resonance (SS-NMR) analysis of V. splendidus. 2H SS-NMR is a useful tool to study the organization and dynamics of phospholipids at the molecular level, and its application to intact bacteria is further advantageous as it allows probing acyl chains in their natural environment and study membrane interactions. In this study, we showed that V. splendidus can be labelled using deuterated palmitic acid, and demonstrated the importance of surfactant choice in the labelling protocol. Moreover, we assessed the impact of lipid deuteration on the general fitness of the bacteria, as well as the saturated-to-unsaturated fatty acid chains ratio and its impact on the membrane properties. We further characterize the evolution of V. splendidus membrane fluidity during different growth stages and relate it to fatty acid chain composition. Our results show larger membrane fluidity during the stationary growth phase compared to the exponential growth phase under labelling conditions - an information to take into account for future in vivo SS-NMR studies. Our lipid deuteration protocol optimized for V. splendidus is likely applicable other microorganisms for in vivo NMR studies.  相似文献   

15.

Introduction

The hormonal milieus of pregnancy and lactation are driving forces of nutrient fluxes supporting infant growth and development. The decrease of insulin sensitivity with compensatory hyperinsulinemia with advancing gestation, causes adipose tissue lipolysis and hepatic de novo lipogenesis (DNL).

Subjects and methods

We compared fatty acid (FA) contents and FA-indices for enzyme activities between preterm (28–36 weeks) and term (37–42) milks, and between colostrum (2–5 days), transitional (6–15) and mature (16–56) milks. We interpreted FA differences between preterm and term milks, and their changes with lactation, in terms of the well known decrease of insulin sensitivity during gestation and its subsequent postpartum restoration, respectively.

Results

Compared with term colostrum, preterm colostrum contained higher indices of DNL in the breast (DNL-breast) and medium chain saturated-FA (MCSAFA), and lower DNL-liver and monounsaturated-FA (MUFA). Preterm milk also had higher docosahexaenoic acid (DHA) in colostrum and transitional milk and higher arachidonic acid (AA) in mature milk. Most preterm-term differences vanished with advancing lactation. In both preterm and term milks, DNL-breast and MCSAFA increased with advancing lactation, while DNL-liver, MUFA, long chain SAFA and AA decreased. DHA decreased in term milk. MUFA was inversely related to MCSAFA in all samples, correlated inversely with PUFA in colostrum and transitional milks, but positively in mature milk. MCSAFA correlated inversely with PUFA in mature milk.

Conclusion

Higher maternal insulin sensitivity at preterm birth may be the cause of lower MUFA (a proxy for DNL-liver) and higher MCSAFA (a proxy for DNL-breast) in preterm colostrum, compared with term colostrum. Restoring insulin sensitivity after delivery may be an important driving force for milk FA-changes in early lactation.  相似文献   

16.
Human synovial fluid (SF) provides nutrition and lubrication to the articular cartilage. Particularly in arthritic diseases, SF is extensively accumulating in the synovial junction. During the last decade lipids have attracted considerable attention as their role in the development and resolution of diseases became increasingly recognized. Here, we describe a capillary LC–MS/MS screening platform that was used for the untargeted screening of lipids present in human SF of rheumatoid arthritis (RA) patients. Using this platform we give a detailed overview of the lipids and lipid‐derived mediators present in the SF of RA patients. Almost 70 different lipid components from distinct lipid classes were identified and quantification was achieved for the lysophosphatidylcholine and phosphatidylcholine species. In addition, we describe a targeted LC–MS/MS lipid mediator metabolomics strategy for the detection, identification and quantification of maresin 1, lipoxin A4 and resolvin D5 in SF from RA patients. Additionally, we present the identification of 5S,12S-diHETE as a major marker of lipoxygenase pathway interactions in the investigated SF samples. These results are the first to provide a comprehensive approach to the identification and profiling of lipids and lipid mediators present in SF and to describe the presence of key anti-inflammatory and pro-resolving lipid mediators identified in SF from RA patients.  相似文献   

17.
18.
The specific volumes of six 1,2-diacylphosphatidylcholines with monounsaturated acyl chains (diCn:1PC, n=14-24 is the even number of acyl chain carbons) in fluid bilayers in multilamellar vesicles dispersed in H(2)O were determined by the vibrating tube densitometry as a function of temperature. From the data obtained with diCn:1PC (n=14-22) vesicles in combination with the densitometric data from Tristram-Nagle et al. [Tristram-Nagle, S., Petrache, H.I., Nagle, J.F., 1998. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys. J. 75, 917-925.] and Koenig and Gawrisch [Koenig, B.W., Gawrisch, K., 2005. Specific volumes of unsaturated phosphatidylcholines in the liquid crystalline lamellar phase. Biochim. Biophys. Acta 1715, 65-70.], the component volumes of phosphatidylcholines in fully hydrated fluid bilayers at 30 degrees C were obtained. The volume of the acyl chain CH and CH(2) group is V(CH)=22.30 A(3) and V(CH2) =A(3), respectively. The volume of the headgroup including the glyceryl and acyl carbonyls, V(H), and the ratio of acyl chain methyl and methylene group volumes, r=V(CH3):V(CH2) are linearly interdependent: V(H)=a-br, where a=434.41 A(3) and b=-55.36 A(3) at 30 degrees C. From the temperature dependencies of component volumes, their isobaric thermal expansivities (alpha(X)=V(X)(-1)(partial differential V(X)/ partial differential T) where X=CH(2), CH, or H were calculated: alpha(CH2)=118.4x10(-5)K(-1), alpha(CH)=71.0x10(-5)K(-1), alpha(H)=7.9x10(-5)K(-1) (for r=2) and alpha(H)=9.6x10(-5)K(-1) (for r=1.9). The specific volume of diC24:1PC changes at the main gel-fluid phase transition temperature, t(m)=26.7 degrees C, by 0.0621 ml/g, its specific volume is 0.9561 and 1.02634 ml/g at 20 and 30 degrees C, respectively, and its isobaric thermal expansivity alpha=68.7x10(-5) and 109.2x10(-5)K(-1) below and above t(m), respectively. The component volumes and thermal expansivities obtained can be used for the interpretation of X-ray and neutron scattering and diffraction experiments and for the guiding and testing molecular dynamics simulations of phosphatidylcholine bilayers in the fluid state.  相似文献   

19.
The elucidation of factors inducing the growth of Plasmodium falciparum can provide critical information about the developmental mechanisms of this parasite and open the way to search for novel targets for malaria chemotherapy. The ability of components of a growth-promoting factor derived from bovine serum and various related substances to sustain growth of P. falciparum was characterized. A simple total lipid fraction (GFS-C) containing non-esterified fatty acids (NEFAs) as essential factors was noted to promote the parasite's growth. Various proteins from a variety of animals were tested, indicating the importance not only of GFS-C, but also of specific proteins, such as bovine and human albumin, in the parasite growth. Several combinations of the NEFAs tested sustained low parasite growth. Among various phospholipids and lysophospholipids tested, lysophosphatidylcholine containing C-18 unsaturated fatty acids was found to sustain the complete development of the parasite in the presence of bovine albumin. Several other lysophospholipids can partially support growth of P. falciparum.  相似文献   

20.
The work presented here describes a new and simple method based on site-directed fluorescence labeling using the BADAN label that permits the examination of protein-lipid interactions in great detail. We applied this technique to a membrane-embedded, mainly α-helical reference protein, the M13 major coat protein. Using a high-throughput approach, 40 site-specific cysteine mutants were prepared of the 50-residues long protein. The steady-state fluorescence spectra were analyzed using a three-component spectral model that enabled the separation of Stokes shift contributions from water and internal label dynamics, and protein topology. We found that most of the fluorescence originated from BADAN labels that were hydrogen-bonded to water molecules even within the hydrophobic core of the membrane. Our spectral decomposition method revealed the embedment and topology of the labeled protein in the membrane bilayer under various conditions of headgroup charge and lipid chain length, as well as key characteristics of the membrane such as hydration level and local polarity, provided by the local dielectric constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号