首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in situ supermolecular structure of type I collagen.   总被引:1,自引:0,他引:1  
BACKGROUND: The proteins belonging to the collagen family are ubiquitous throughout the animal kingdom. The most abundant collagen, type I, readily forms fibrils that convey the principal mechanical support and structural organization in the extracellular matrix of connective tissues such as bone, skin, tendon, and vasculature. An understanding of the molecular arrangement of collagen in fibrils is essential since it relates molecular interactions to the mechanical strength of fibrous tissues and may reveal the underlying molecular pathology of numerous connective tissue diseases. RESULTS: Using synchrotron radiation, we have conducted a study of the native fibril structure at anisotropic resolution (5.4 A axial and 10 A lateral). The intensities of the tendon X-ray diffraction pattern that arise from the lateral packing (three-dimensional arrangement) of collagen molecules were measured by using a method analogous to Rietveld methods in powder crystallography and to the separation of closely spaced peaks in Laue diffraction patterns. These were then used to determine the packing structure of collagen by MIR. CONCLUSIONS: Our electron density map is the first obtained from a natural fiber using these techniques (more commonly applied to single crystal crystallography). It reveals the three-dimensional molecular packing arrangement of type I collagen and conclusively proves that the molecules are arranged on a quasihexagonal lattice. The molecular segments that contain the telopeptides (central to the function of collagen fibrils in health and disease) have been identified, revealing that they form a corrugated arrangement of crosslinked molecules that strengthen and stabilize the native fibril.  相似文献   

2.
The structure and distribution of collagen fibres in Metridium senile mesoglea has been investigated using high and small angle X-ray diffraction techniques on conventional and synchrotron sources. The mesoglea collagen axial spacing appears very close to that of rat tail tendon, which is at variance with the values previously obtained from electron microscopic observations. The different intensity distribution of the small angle X-ray diffraction maxima recorded for mesoglea and rat tail tendon indicates a different distribution of electron density inside the repeating period. Furthermore the absence of the first order, the weak second order and the strong third and sixth orders in the patterns of wet and dry mesogleal collagen could explain that only a periodicity of 20–22 nm corresponding to one-third of the true axial period observed in the electron micrographs. The analysis of the reflections at 0.29 and 1.1–1.4 nm characteristics of the collagen molecular structure have been used to determine the distribution and orientation of the collagen fibres in unstretched and stretched samples  相似文献   

3.
M F Paige  J K Rainey    M C Goh 《Biophysical journal》1998,74(6):3211-3216
Fibrous long spacing collagen (FLS) fibrils are collagen fibrils in which the periodicity is clearly greater than the 67-nm periodicity of native collagen. FLS fibrils were formed in vitro by the addition of alpha1-acid glycoprotein to an acidified solution of monomeric collagen and were imaged with atomic force microscopy. The fibrils formed were typically approximately 150 nm in diameter and had a distinct banding pattern with a 250-nm periodicity. At higher resolution, the mature FLS fibrils showed ultrastructure, both on the bands and in the interband region, which appears as protofibrils aligned along the main fibril axis. The alignment of protofibrils produced grooves along the main fibril, which were 2 nm deep and 20 nm in width. Examination of the tips of FLS fibrils suggests that they grow via the merging of protofibrils to the tip, followed by the entanglement and, ultimately, the tight packing of protofibrils. A comparison is made with native collagen in terms of structure and mechanism of assembly.  相似文献   

4.
Structure of corneal scar tissue: an X-ray diffraction study.   总被引:2,自引:1,他引:1       下载免费PDF全文
Full-thickness corneal wounds (2 mm diameter) were produced in rabbits at the Schepens Eye Research Institute, Boston. These wounds were allowed to heal for periods ranging from 3 weeks to 21 months. The scar tissue was examined using low- and wide-angle x-ray diffraction from which average values were calculated for 1) the center-to-center collagen fibril spacing, 2) the fibril diameter, 3) the collagen axial periodicity D, and 4) the intermolecular spacing within the collagen fibrils. Selected samples were processed for transmission electron microscopy. The results showed that the average spacing between collagen fibrils within the healing tissue remained slightly elevated after 21 months and there was a small increase in the fibril diameter. The collagen D-periodicity was unchanged. There was a significant drop in the intermolecular spacing in the scar tissues up to 6 weeks, but thereafter the spacing returned to normal. The first-order equatorial reflection in the low-angle pattern was visible after 3 weeks and became sharper and more intense with time, suggesting that, as healing progressed, the number of nearest neighbor fibrils increased and the distribution of nearest neighbor spacings reduced. This corresponded to the fibrils becoming more ordered although, even after 21 months, normal packing was not achieved. Ultrastructural changes in collagen fibril density measured from electron micrographs were consistent with the increased order of fibril packing measured by x-ray diffraction. The results suggest that collagen molecules have a normal axial and lateral arrangement within the fibrils of scar tissue. The gradual reduction in the spread of interfibrillar spacings may be related to the progressive decrease in the light scattered from the tissue as the wound heals.  相似文献   

5.
X-ray diffraction patterns of fibres from 90 day (mature) rat-tail tendons were investigated using synchrotron radiation. The specimens were kept isometric at their corresponding in vitro rest length, and effects of pH and ionic strength were studied during short X-ray exposures. The results indicate that fibrils, equilibrated in physiological Ringer prior to exposure, have segregated lateral regions of well ordered collagen molecular packing. Lowering the ionic strength or the pH to 4.0 causes an order/disorder transition during which the fibril crystallinity decreases. At pH 3.5 a dramatic increase in the lateral swelling was observed. This effect was absent for fibres pretreated with sodium borohydride. The results are interpreted on the basis of cross-linking phenomena whereby the aldimine cross-link seems to be a controlling component of the lateral packing arrangement of collagen molecules.  相似文献   

6.
Using a synchrotron X-ray source, it has been possible to record a low-angle diffraction pattern from fresh bovine corneal stroma.The pattern can be interpreted as arising from the short-range order packing of collagen fibrils in lamellae. Model calculations suggest that the positions of the fibrils remain correlated over distances corresponding to, at most, three fibril diameters (~ 120 nm). These results support theories of transparency of the cornea based on short-range order.Further, a study of the fibril spacing as a function of hydration confirms that water uptake occurs largely between the lamellae and in regions devoid of collagen fibrils, and shows that the fibril diameter increases with hydration.  相似文献   

7.
The equatorial diffraction pattern of tendon collagen fibres was measured during short successive exposures at different lengths using a double focusing X-ray synchrotron radiation camera with film and with an area detector. Similarly, patterns from thin fibres from premature rats were recorded. The patterns unambiguously illustrate the relationship between fibre crystallinity and the age of the animal. Further, the results indicate that in the initial part of the linear region of the stiffness-versus-length curve, the collagen fibres are characterized by a quasihexagonal arrangement of collagen molecules, whereas at the end of this region, the molecular arrangement becomes hexagonal.  相似文献   

8.
Collagen fibrils, a major component of mitral valve leaflets, play an important role in defining shape and providing mechanical strength and flexibility. Histopathological studies show that collagen fibrils undergo dramatic changes in the course of myxomatous mitral valve disease in both dogs and humans. However, little is known about the detailed organization of collagen in this disease. This study was designed to analyze and compare collagen fibril organization in healthy and lesional areas of myxomatous mitral valves of dogs, using synchrotron small-angle x-ray diffraction. The orientation, density, and alignment of collagen fibrils were mapped across six different valves. The findings reveal a preferred collagen alignment in the main body of the leaflets between two commissures. Qualitative and quantitative analysis of the data showed significant differences between affected and lesion-free areas in terms of collagen content, fibril alignment, and total tissue volume. Regression analysis of the amount of collagen compared to the total tissue content at each point revealed a significant relationship between these two parameters in lesion-free but not in affected areas. This is the first time this technique has been used to map collagen fibrils in cardiac tissue; the findings have important applications to human cardiology.  相似文献   

9.
The distribution and orientation of collagen fibrils, and apatite crystals, in the scales of a bony fish (Leuciscus cephalus) were investigated by X-ray diffraction. The small-angle diffraction patterns obtained with a microfocus scanning setup from most of the examined areas exhibit a distribution of intensity of the collagen reflections according to five preferential orientations, at 36 degrees from one another. It is suggested that the peculiar small-angle X-ray diffraction pattern is due to a plywood arrangement of collagen fibrils in successive layers parallel to the surface of the scale. The fibrils are strictly aligned in each layer and the alignment rotates by 36 degrees in successive layers, according to a discontinuous twist that generates a symmetric plywood pattern. The large spread of the wide-angle reflections does not allow one to distinguish the five directions of orientation in the intensity distribution of the 002 reflection of apatite. However, the patterns recorded from the less ordered regions of the scales display two different orientations of the 002 reflection and allow one to infer a preferential distribution of the apatite crystals with their c-axes parallel to the collagen fibrils. Although much electron microscopic evidence of plywood arrangements in calcified, as well as uncalcified, tissues has been reported, these are the very first diffraction data which unambiguously confirm the presence of these peculiar structures and suggest that this kind of investigation represents a powerful tool with which to study plywood arrangements in biological tissues.  相似文献   

10.
The intermolecular and interfibrillar spacings of collagen in bovine corneal stroma have been measured as a function of tissue hydration. Data were recorded from low- and high-angle x-ray diffraction patterns obtained using a high intensity synchrotron source. The most frequently occurring interfibrillar spacing varied from 34 nm in dry corneas to 76 nm at H = 5 (the hydration, H, is defined as the ratio of the weight of water to the dry weight). The most frequently occurring intermolecular Bragg spacing increased from 1.15 nm (dry) to approximately 1.60 nm at normal hydration (H approximately 3.2) and continued to increase only slowly above normal hydration. Most of the increase in the intermolecular spacing occurred between H = O and H = 1. Over this hydration range the interfibrillar and intermolecular spacings moved in tandem, which suggests that the initial water goes equally within and between the fibrils. Above H = 1 water goes preferentially between the fibrils. The results suggest that, even at normal hydration, water does not fill the interfibrillar space uniformly, and a proportion is located in another space or compartment. In dried-then-rehydrated corneas, a larger proportion of the water goes into this other compartment. In both cases, it is possible to postulate a second set or population of fibrils that are more widely and irregularly separated and therefore do not contribute significantly to the diffraction pattern.  相似文献   

11.
Treatment of bovine corneal stroma using SDS-containing extracting solutions removes a 135,000 MW glycoprotein from the main collagen framework of the tissue. Low-angle synchrotron X-ray diffraction patterns obtained from corneas extracted in this way indicate that the glycoprotein has been removed from the gap regions of the collagen fibrils and is thus an important structural component of the corneal stroma. The glycoprotein (GP 135) shares a number of properties with one of the subunits of type VI collagen, but tests have so far failed to establish their identity.  相似文献   

12.
Wen CK  Goh MC 《Proteins》2006,64(1):227-233
Nanodissection of single fibrous long spacing (FLS) type collagen fibrils by atomic force microscopy (AFM) reveals hierarchical internal structure: Fibrillar subcomponents with diameters of approximately 10 to 20 nm were observed to be running parallel to the long axis of the fibril in which they are found. The fibrillar subcomponent displayed protrusions with characteristic approximately 270 nm periodicity, such that protrusions on neighboring subfibrils were aligned in register. Hence, the banding pattern of mature FLS-type collagen fibrils arises from the in-register alignment of these fibrillar subcomponents. This hierarchical organization observed in FLS-type collagen fibrils is different from that previously reported for native-type collagen fibrils, displaying no supercoiling at the level of organization observed.  相似文献   

13.
The mechanism of formation of fibrillar collagen with a banding periodicity much greater than the 67 nm of native collagen, i.e. the so-called fibrous long spacing (FLS) collagen, has been speculated upon, but has not been previously studied experimentally from a detailed structural perspective. In vitro, such fibrils, with banding periodicity of approximately 270 nm, may be produced by dialysis of an acidic solution of type I collagen and alpha(1)-acid glycoprotein against deionized water. FLS collagen assembly was investigated by visualization of assembly intermediates that were formed during the course of dialysis using atomic force microscopy. Below pH 4, thin, curly nonbanded fibrils were formed. When the dialysis solution reached approximately pH 4, thin, filamentous structures that showed protrusions spaced at approximately 270 nm were seen. As the pH increased, these protofibrils appeared to associate loosely into larger fibrils with clear approximately 270 nm banding which increased in diameter and compactness, such that by approximately pH 4.6, mature FLS collagen fibrils begin to be observed with increasing frequency. These results suggest that there are aspects of a stepwise process in the formation of FLS collagen, and that the banding pattern arises quite early and very specifically in this process. It is proposed that typical 4D-period staggered microfibril subunits assemble laterally with minimal stagger between adjacent fibrils. alpha(1)-Acid glycoprotein presumably promotes this otherwise abnormal lateral assembly over native-type self-assembly. Cocoon-like fibrils, which are hundreds of nanometers in diameter and 10-20 microm in length, were found to coexist with mature FLS fibrils.  相似文献   

14.
The roles of pH and ionic strength on the structure and stability of collagen fibrils have been investigated by means of x-ray and neutron diffraction techniques. High-angle x-ray diffraction shows that a salt concentration of 0.5M KCl is sufficient to reduce the osmotic swelling and related disordering in the pH range 1–3. The relative intensities of the low-angle meridional x-ray and neutron diffraction Bragg reflections vary with pH. Difference Fourier syntheses between pH 7 and 1.6 data indicate, for both x-ray and neutron diffraction, a reduced scattering contribution from the telopeptides at low pH. Lyotropic relaxation is a crucial step in the appearance at low pH of a doubling of the 668-Å axial periodicity (D) of collagen fibrils. These results suggest that electrostatic interactions are essential for the structural stability of the telopeptide regions and of the 1D and 3D intermolecular staggers between collagen molecules.  相似文献   

15.
Stress-strain curves were recorded from anterior and posterior longitudinal ligaments and ligamenta flava dissected from pig lumbar spines. Ligaments were examined during extension by light microscopy, to observe crimp structure, and by X-ray diffraction, to determine collagen fibril orientations. Scanning electron microscopy (SEM) was used to examine ligaments fixed at high and low strains. Initial stages of ligament extension involvd alignment of collagen fibrils. Collagen fibrils in unstrained ligamentum flavum were much more disoriented than in the longitudinal ligaments. Thus, fibril alignment, and consequent stiffening, occurred at much higher strains than for longitudinal ligaments, allowing ligamentum flavum to exploit the extensibility of its elastin.  相似文献   

16.
It has been suggested that dermal collagen fibrils with 67-nm periodicity consist of hybrids of type I and type III collagens. This is based on the assumption that all these banded fibrils are coated with type III collagen regardless of their diameter. However, conclusive evidence for this form of hybridization is lacking. In order to clarify this problem dermal collagen fibrils were disrupted into microfibrils using 8 M urea. Single and double indirect immunoelectron microscopy showed type III collagen at the periphery of intact collagen fibrils but no labeling with type I collagen antibodies, suggesting that the epitopes for this collagen were masked. Disrupted collagen fibrils revealed type I collagen throughout the fibril except for the periphery which was coated with type III collagen. Almost no type III collagen was noted in the interior of the collagen fibrils. Since type III collagen is present only at the periphery it suggests that this collagen has a different role than type I collagen and may have a regulatory function in fibrillogenesis.  相似文献   

17.
Cross-links in tendon collagen are essential for the biomechanical strength of healthy tissue. The nature and position of these cross-links has long been a subject for conjecture. We have approached this problem in a non-destructive manner, by studying neutron diffraction from collagen fibrils that have been specifically deuterated by reduction at keto-amine and Schiff base groups with sodium borodeuteride (NaB2H4). The intensities of the first 23 meridional reflections were recorded for both native and reduced tendons. These data were used to calculate the neutron-scattering density profile of the 67 nm (D) repeat of type I collagen fibrils in rat tail tendon. This approach not only succeeds in determining the location of the cross-linkage sites with respect to the fibril structure, as projected onto the fibre axis, but also presents a novel form of the isomorphous derivative solution to the phase problem.  相似文献   

18.
High and low angle X-ray diffraction patterns from the corneal stroma give information about the mean intermolecular spacing of the collagen molecules and the mean interfibrillar spacing of the collagen fibrils, respectively. X-ray data were collected, using a high intensity synchrotron source, from human corneas and sclera at approximately physiological hydration. The spacings were measured as a function of tissue age. Between birth and 90 years there is an increase in the cross-sectional area associated with each molecule in corneal collagen from approx. 3.04 nm2 to 3.46 nm2, and an increase in scleral collagen from approx. 2.65 nm2 to 3.19 nm2. These changes may be due to an increase in the extent of non-enzymic cross-linking between collagen molecules over the age range. We have investigated this possibility by measuring collagen glycation using the thiobarbituric acid assay and the subsequent advanced glycation end-products (AGEs) using fluorescence emission. The results obtained have shown an age-related increase in glycation and AGEs in both tissues. We have also demonstrated a decrease in the interfibrillar spacing of corneal collagen with increasing age which may be related to changes in the proteoglycan composition of the interfibrillar matrix.  相似文献   

19.
We report here the existence of a crystalline molecular packing of type II collagen in the fibrils of the lamprey notochord sheath. This is the first finding of a crystalline structure in any collagen other than type I.The lamprey notochord sheath has a composition similar to that of cartilage, with type II collagen, a minor collagen component with 1α, 2α and 3α chains, and cartilage-like proteoglycan. The high degree of orientation of fibrils in the notochord makes it possible to use X-ray diffraction to determine collagen fibril organization in this type II-containing tissue. The low angle equatorial scattering shows the fibrils are all about 17 nm in diameter and have an average center-to-center separation of 31 nm. These results are supported by electron microscope observations. A set of broad equatorial diffraction maxima at higher angles represents the sampling of the collagen molecular transform by a limited crystalline lattice, extending over a lateral dimension close to the diameter of one fibril. This indicates that each 17 nm fibril contains a crystalline array of molecules and, although a unit cell is difficult to determine because of the broad overlapping reflections, it is clear that the quasi-hexagonal triclinic unit cell of type I collagen in rat tail tendon is not consistent with the data. The meridional diffraction pattern showed 26 orders with the characteristic 67 nm periodicity found for tendon. However, the intensities of these reflections differ markedly from those found for tendon and cannot be explained by an unmodified gap/ overlap model within each 67 nm period. Both X-ray diffraction and electron microscope data indicate a low degree of contrast along the fibril axis and are consistent with a periodic binding of a non-collagenous component in such a way as to obscure the gap region.  相似文献   

20.
Dentin and bone derive their mechanical properties from a complex arrangement of collagen type-I fibrils reinforced with nanocrystalline apatite mineral in extra- and intrafibrillar compartments. While mechanical properties have been determined for the bulk of the mineralized tissue, information on the mechanics of the individual fibril is limited. Here, atomic force microscopy was used on individual collagen fibrils to study structural and mechanical changes during acid etching. The characteristic 67 nm periodicity of gap zones was not observed on the mineralized fibril, but became apparent and increasingly pronounced with continuous demineralization. AFM-nanoindentation showed a decrease in modulus from 1.5 GPa to 50 MPa during acid etching of individual collagen fibrils and revealed that the modulus profile followed the axial periodicity. The nanomechanical data, Raman spectroscopy and SAXS support the hypothesis that intrafibrillar mineral etches at a substantially slower rate than the extrafibrillar mineral. These findings are relevant for understanding the biomechanics and design principles of calcified tissues derived from collagen matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号