首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
徐凌星  杨德伟  高雪莉  郭青海 《生态学报》2019,39(12):4328-4336
工业园区因物质能量的高度集聚,生产-消费过程的网络关联,以及区域示范带动效应,在循环经济发展中受到持续关注。本研究以福建省蛟洋循环经济示范园区为例,应用物质流、生态网络和生态效率等测度分析方法,综合评估了2012—2016年间园区循环经济的网络关联和生态效率。研究结果表明:(1)园区物质流结构单一,关联度和稳定度明显较弱;(2)园区网络的韧性不足,关键节点的级联效应显著,尤其对中下游企业的影响程度大;(3)生态效率指数分析发现,园区关键节点企业在循环经济效益方面带动能力不足,影响园区循环经济的前景。为此,从园区网络关联稳定度和企业生态经济效率优化提升的角度,探讨园区未来的循环经济发展策略。可为处于起步阶段的专一化工业园区探索可行的循环经济模式提供借鉴。  相似文献   

2.
We develop ways to predict the side chain orientations of residues within a protein structure by using several different statistical machine learning methods. Here side chain orientation of a given residue i is measured by an angle Omega(i) between the vector pointing from the center of the protein structure to the C(i)(alpha) atom and the vector pointing from the C(i)(alpha) atom to the center of its side chain atoms. To predict the Omega(i) angles, we construct statistical models by using several different methods such as general linear regression, a regression tree and bagging, a neural network, and a support vector machine. The root mean square errors for the different models range only from 36.67 to 37.60 degrees and the correlation coefficients are all between 30% and 34%. The performances of different models in the test set are, thus, quite similar, and show the relative predictive power of these models to be significant in comparison with random side chain orientations.  相似文献   

3.
Liu L  Ho YK  Yau S 《DNA and cell biology》2007,26(7):477-483
The inhomogeneous Markov chain model is used to discriminate acceptor and donor sites in genomic DNA sequences. It outperforms statistical methods such as homogeneous Markov chain model, higher order Markov chain and interpolated Markov chain models, and machine-learning methods such as k-nearest neighbor and support vector machine as well. Besides its high accuracy, another advantage of inhomogeneous Markov chain model is its simplicity in computation. In the three states system (acceptor, donor, and neither), the inhomogeneous Markov chain model is combined with a three-layer feed forward neural network. Using this combined system 3175 primate splice-junction gene sequences have been tested, with a prediction accuracy of greater than 98%.  相似文献   

4.

The most basic and significant issue in complex network analysis is community detection, which is a branch of machine learning. Most current community detection approaches, only consider a network's topology structures, which lose the potential to use node attribute information. In attributed networks, both topological structure and node attributed are important features for community detection. In recent years, the spectral clustering algorithm has received much interest as one of the best performing algorithms in the subcategory of dimensionality reduction. This algorithm applies the eigenvalues of the affinity matrix to map data to low-dimensional space. In the present paper, a new version of the spectral cluster, named Attributed Spectral Clustering (ASC), is applied for attributed graphs that the identified communities have structural cohesiveness and attribute homogeneity. Since the performance of spectral clustering heavily depends on the goodness of the affinity matrix, the ASC algorithm will use the Topological and Attribute Random Walk Affinity Matrix (TARWAM) as a new affinity matrix to calculate the similarity between nodes. TARWAM utilizes the biased random walk to integrate network topology and attribute information. It can improve the similarity degree among the pairs of nodes in the same density region of the attributed network, without the need for parameter tuning. The proposed approach has been compared to other primary and new attributed graph clustering algorithms based on synthetic and real datasets. The experimental results show that the proposed approach is more effective and accurate compared to other state-of-the-art attributed graph clustering techniques.

  相似文献   

5.
Ohta J 《Systems biology》2006,153(5):372-374
An approach for analysis of biological networks is proposed. In this approach, named the connectivity matrix (CM) method, all the connectivities of interest are expressed in a matrix. Then, a variety of analyses are performed on GNU Octave or Matlab. Each node in the network is expressed as a row vector or numeral that carries information defining or characterising the node itself. Information about connectivity itself is also expressed as a row vector or numeral. Thus, connection of node n1 to node n2 through edge e is expressed as [n1, n2, e], a row vector formed by the combination of three row vectors or numerals, where n1, n2 and e indicate two different nodes and one connectivity, respectively. All the connectivities in any given network are expressed as a matrix, CM, each row of which corresponds to one connectivity. Using this CM method, intermetabolite atom-level connectivity is investigated in a model metabolic network composed of the reactions for glycolysis, oxidative decarboxylation of pyruvate, citric acid cycle, pentose phosphate pathway and gluconeogenesis.  相似文献   

6.
Abstract

We develop ways to predict the side chain orientations of residues within a protein structure by using several different statistical machine learning methods. Here side chain orientation of a given residue i is measured by an angle Ωi between the vector pointing from the center of the protein structure to the Cα i atom and the vector pointing from the Cα i atom to the center of its side chain atoms. To predict the Ωi angles, we construct statistical models by using several different methods such as general linear regression, a regression tree and bagging, a neural network, and a support vector machine. The root mean square errors for the different models range only from 36.67 to 37.60 degrees and the correlation coefficients are all between 30% and 34%. The performances of different models in the test set are, thus, quite similar, and show the relative predictive power of these models to be significant in comparison with random side chain orientations.  相似文献   

7.
It is well known that proteins undergo backbone as well as side chain conformational changes upon ligand binding, which is not necessarily confined to the active site. Both the local and the global conformational changes brought out by ligand-binding have been extensively studied earlier. However, the global changes have been reported mainly at the protein backbone level. Here we present a method that explicitly takes into account the side chain interactions, yet providing a global view of the ligand-induced conformational changes. This is achieved through the analysis of Protein Structure Networks (PSN), constructed from the noncovalent side chain interactions in the protein. Here, E. coli Glutaminyl-tRNA synthetase (GlnRS) in the ligand-free and different ligand-bound states is used as a case study to assess the effect of binding of tRNA, ATP, and the amino acid Gln to GlnRS. The PSNs are constructed on the basis of the strength of noncovalent interactions existing between the side chains of amino acids. The parameters like the size of the largest cluster, edge to node ratio, and the total number of hubs are used to quantitatively assess the structure network changes. These network parameters have effectively captured the ligand-induced structural changes at a global structure network level. Hubs, the highly connected amino acids, are also identified from these networks. Specifically, we are able to characterize different types of hubs based on the comparison of structure networks of the GlnRS system. The differences in the structure networks in both the presence and the absence of the ligands are reflected in these hubs. For instance, the characterization of hubs that are present in both the ligand-free and all the ligand-bound GlnRS (the invariant hubs) might implicate their role in structural integrity. On the other hand, identification of hubs unique to a particular ligand-bound structure (the exclusive hubs) not only highlights the structural differences mediated by ligand-binding at the structure network level, but also highlights significance of these amino acids hubs in binding to the ligand and catalyzing the biochemical function. Further, the hubs identified from this study could be ideal targets for mutational studies to ascertain the ligand-induced structure-function relationships in E. coli GlnRS. The formalism used in this study is simple and can be applied to other protein-ligands in general to understand the allosteric changes mediated by the binding of ligands.  相似文献   

8.
9.
Nayak L  De RK 《Journal of biosciences》2007,32(5):1009-1017
Signalling pathways are complex biochemical networks responsible for regulation of numerous cellular functions. These networks function by serial and successive interactions among a large number of vital biomolecules and chemical compounds. For deciphering and analysing the underlying mechanism of such networks,a modularized study is quite helpful. Here we propose an algorithm for modularization of calcium signalling pathway of H. sapiens .The idea that "a node whose function is dependent on maximum number of other nodes tends to be the center of a sub network" is used to divide a large signalling network into smaller sub networks. Inclusion of node(s) into sub networks(s) is dependent on the outdegree of the node(s). Here outdegree of a node refers to the number of relations of the considered node lying outside the constructed sub network. Node(s) having more than c relations lying outside the expanding sub network have to be excluded from it. Here c is a specified variable based on user preference, which is finally fixed during adjustments of created sub networks, so that certain biological significance can be conferred on them.  相似文献   

10.
Identifying clusters, namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. By means of a lumped Markov chain model of a random walker, we propose two novel ways of inferring the lumped markov transition matrix. Furthermore, some useful results are proposed based on the analysis of the properties of the lumped Markov process. To find the best partition of complex networks, a novel framework including two algorithms for network partition based on the optimal lumped Markovian dynamics is derived to solve this problem. The algorithms are constructed to minimize the objective function under this framework. It is demonstrated by the simulation experiments that our algorithms can efficiently determine the probabilities with which a node belongs to different clusters during the learning process and naturally supports the fuzzy partition. Moreover, they are successfully applied to real-world network, including the social interactions between members of a karate club.  相似文献   

11.
Hypothetical protein [HP] annotation poses a great challenge especially when the protein is putatively linked or mapped to another protein. With protein interaction networks (PIN) prevailing, many visualizers still remain unsupported to the HP annotation. Through this work, we propose a six-point classification system to validate protein interactions based on diverse features. The HP data-set was used as a training data-set to find putative functional interaction partners to the remaining proteins that are waiting to be interacting. A Total Reliability Score (TRS) was calculated based on the six-point classification which was evaluated using machine learning algorithm on a single node. We found that multilayer perceptron of neural network yielded 81.08% of accuracy in modelling TRS whereas feature selection algorithms confirmed that all classification features are implementable. Furthermore statistical results using variance and co-variance analyses confirmed the usefulness of these classification metrics. It has been evaluated that of all the classification features, subcellular location (sorting signals) makes higher impact in predicting the function of HPs.  相似文献   

12.
Strona and Veech (2015) developed a new node segregation (or node overlap) index for analysing ecological network structure based on the Veech (2013)’s species co-occurrence probabilistic model, which was originally applied to species-site matrices. However, a species-site matrix for analysing species co-occurrence patterns and an adjacency matrix for characterising unimode network structures are different. Directly applying Veech’s species co-occurrence probabilistic model to adjacency matrices in unimode food webs is problematic. The central critical problem is related to the number of free species (or nodes/vertices) in the unimode network that can be the neighbors (have links to connect) of a focused species or a focused pair of species. This number is typically less than the total number of species in real food webs. That is, species are not independent from each other in unimode networks. For a simple undirected unimode network without self-loops, based on the criterion whether there is a link between two species for a focused pair, a correct probabilistic model is developed to accurately compute the probability of observing some shared neighbors for a pair of species in the network. Numerical simulation show that the node overlap calculated using the correct and original probabilistic models present remarkable differences, especially when a unimode network is nested and contains generalists. In summary, The correct probabilistic model should be used if ones want Strona and Veech (2015)’s node segregation index to work for unimode food webs.  相似文献   

13.
A trust network is a social network in which edges represent the trust relationship between two nodes in the network. In a trust network, a fundamental question is how to assess and compute the bias and prestige of the nodes, where the bias of a node measures the trustworthiness of a node and the prestige of a node measures the importance of the node. The larger bias of a node implies the lower trustworthiness of the node, and the larger prestige of a node implies the higher importance of the node. In this paper, we define a vector-valued contractive function to characterize the bias vector which results in a rich family of bias measurements, and we propose a framework of algorithms for computing the bias and prestige of nodes in trust networks. Based on our framework, we develop four algorithms that can calculate the bias and prestige of nodes effectively and robustly. The time and space complexities of all our algorithms are linear with respect to the size of the graph, thus our algorithms are scalable to handle large datasets. We evaluate our algorithms using five real datasets. The experimental results demonstrate the effectiveness, robustness, and scalability of our algorithms.  相似文献   

14.
A method for computing the likelihood of a set of sequences assuming a phylogenetic network as an evolutionary hypothesis is presented. The approach applies directed graphical models to sequence evolution on networks and is a natural generalization of earlier work by Felsenstein on evolutionary trees, including it as a special case. The likelihood computation involves several steps. First, the phylogenetic network is rooted to form a directed acyclic graph (DAG). Then, applying standard models for nucleotide/amino acid substitution, the DAG is converted into a Bayesian network from which the joint probability distribution involving all nodes of the network can be directly read. The joint probability is explicitly dependent on branch lengths and on recombination parameters (prior probability of a parent sequence). The likelihood of the data assuming no knowledge of hidden nodes is obtained by marginalization, i.e., by summing over all combinations of unknown states. As the number of terms increases exponentially with the number of hidden nodes, a Markov chain Monte Carlo procedure (Gibbs sampling) is used to accurately approximate the likelihood by summing over the most important states only. Investigating a human T-cell lymphotropic virus (HTLV) data set and optimizing both branch lengths and recombination parameters, we find that the likelihood of a corresponding phylogenetic network outperforms a set of competing evolutionary trees. In general, except for the case of a tree, the likelihood of a network will be dependent on the choice of the root, even if a reversible model of substitution is applied. Thus, the method also provides a way in which to root a phylogenetic network by choosing a node that produces a most likely network.  相似文献   

15.
中国主要农产品虚拟要素贸易网络结构特征分析   总被引:1,自引:0,他引:1  
韩雪  梁璇  王倩 《生态学报》2020,40(11):3851-3865
据虚拟水概念定义虚拟要素,并将其划分为虚拟资源要素和虚拟生态要素两类,选取虚拟资源要素中的耕地要素和虚拟生态要素中的化肥/农药要素为研究对象,定量分析2002—2016年以粮食贸易为载体的虚拟耕地、虚拟化肥/农药要素的贸易量,构建虚拟要素贸易网络,通过复杂网络的研究方法,结果表明:2002—2016年我国主要农产品虚拟耕地、化肥/农药要素的贸易总量呈下降趋势,降幅分别约25.51%、8.01%;虚拟耕地要素网络节点入度较大的为长江中下游、华南、西南地区,出度较大的为黄淮海和东北地区,虚拟化肥/农药要素网络与之相反;地区间节点强度的差异性大,虚拟耕地要素差值最大可达1459.56万hm~2,虚拟化肥/农药要素达61.38万t;二者网络节点度和强度的累积分布均符合幂律分布规律,其尾部的"重尾"现象揭示了节点度和强度的高可变性以及网络结构的脆弱性;虚拟耕地要素的输入区网络同配,输出区网络异配,揭示了地区间耕地要素的流动既呈集聚又有分散的态势,虚拟化肥/农药要素网络节点相关性皆为减函数,网络异配,揭示了虚拟化肥/农药要素在八大区域间联通的状况。网络结构特征分析为研究网络抗毁性特征和网络的优化调控机制奠定基础,为中国粮食贸易格局和粮价制定以及各个地区的农业种植结构调整提供理论依据。  相似文献   

16.
17.
This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.  相似文献   

18.
We study intrinsic properties of attractor in Boolean dynamics of complex networks with scale-free topology, comparing with those of the so-called Kauffman's random Boolean networks. We numerically study both frozen and relevant nodes in each attractor in the dynamics of relatively small networks (20?N?200). We investigate numerically robustness of an attractor to a perturbation. An attractor with cycle length of ?c in a network of size N consists of ?c states in the state space of 2N states; each attractor has the arrangement of N nodes, where the cycle of attractor sweeps ?c states. We define a perturbation as a flip of the state on a single node in the attractor state at a given time step. We show that the rate between unfrozen and relevant nodes in the dynamics of a complex network with scale-free topology is larger than that in Kauffman's random Boolean network model. Furthermore, we find that in a complex scale-free network with fluctuation of the in-degree number, attractors are more sensitive to a state flip for a highly connected node (i.e. input-hub node) than to that for a less connected node. By some numerical examples, we show that the number of relevant nodes increases, when an input-hub node is coincident with and/or connected with an output-hub node (i.e. a node with large output-degree) one another.  相似文献   

19.
A strategy for zooming in and out the topological environment of a node in a complex network is developed. This approach is applied here to generalize the subgraph centrality of nodes in complex networks. In this case the zooming in strategy is based on the use of some known matrix functions which allow focusing locally on the environment of a node. When a zooming out strategy is applied new matrix functions are introduced, which give a more global picture of the topological surrounds of a node. These indices permit a modulation of the scales at which the environment of a node influences its centrality. We apply them to the study of 10 protein-protein interaction (PPI) networks. We illustrate the similarities and differences between the generalized subgraph centrality indices as well as among them and some classical centrality measures. We show here that the use of centrality indices based on the zooming in strategy identifies a larger number of essential proteins in the yeast PPI network than any of the other centrality measures studied.  相似文献   

20.
Peng  Bo  Li  Lei 《Cognitive neurodynamics》2015,9(2):249-256
Wireless sensor network (WSN) are widely used in many applications. A WSN is a wireless decentralized structure network comprised of nodes, which autonomously set up a network. The node localization that is to be aware of position of the node in the network is an essential part of many sensor network operations and applications. The existing localization algorithms can be classified into two categories: range-based and range-free. The range-based localization algorithm has requirements on hardware, thus is expensive to be implemented in practice. The range-free localization algorithm reduces the hardware cost. Because of the hardware limitations of WSN devices, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. However, these techniques usually have higher localization error compared to the range-based algorithms. DV-Hop is a typical range-free localization algorithm utilizing hop-distance estimation. In this paper, we propose an improved DV-Hop algorithm based on genetic algorithm. Simulation results show that our proposed algorithm improves the localization accuracy compared with previous algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号