首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent studies have revealed that murine bone marrow-derived cultured mast cells (BMMC), which are phenotypically immature mast cells, express functional TLR2 and TLR4 that recognize distinct pathogen-associated molecules. However, it remains relatively uncertain whether mast cells express other TLR. We recently established a method to obtain large numbers of murine fetal skin-derived cultured mast cells (FSMC); these cells exhibit important features of connective tissue type mast cells. Working with FSMC and BMMC, the TLR mRNA expression profiles were compared between both cell types. Although TLR2 and TLR4 mRNA were detected in both cells at comparable levels, TLR3, TLR7, and TLR9 mRNA were expressed by FSMC at higher levels than by BMMC, suggesting distinct TLR expression profiles among different mast cell populations. With respect to their functional aspects, FSMC, but not BMMC, dose dependently produced proinflammatory cytokines (TNF-alpha and IL-6) and chemokines (RANTES, MIP-1alpha, and MIP-2) in response to poly(I:C), R-848, and CpG oligodeoxynucleotide, which are TLR3, TLR7, and TLR9 activators, respectively. Interestingly, these TLR activators failed to induce degranulation and IL-13 production by both mast cells, although peptidoglycan and LPS (TLR2 and TLR4 activators, respectively) induced IL-13 production by both cells. Mast cells, thus, may have potential to recruit other immune cells to the infected sites by responding to various bacterial and viral components through TLR signaling pathways, presumably being involved in initiating innate immunity and subsequently linking innate and acquired immune responses.  相似文献   

2.
To address the role played by MD-2 in mast cell recognition of LPS, we examined bone marrow-derived mast cells (BMMCs) from MD-2 gene-targeted mice. BMMCs from MD-2-/- mice showed impaired cytokine production (TNF-alpha, IL-6, IL-13, and IL-1beta) in response to LPS from Escherichia coli, but not to peptidoglycan (PGN) from Staphylococcus aureus. In a mast cell-dependent acute septic model, MD-2 deficiency of mast cell resulted in significantly higher mortality due to defective neutrophil recruitment and the production of cytokines in the peritoneal cavity, which was similar to mice with TLR4-deficient mast cells. The TLR2-dependent activation of skin mast cells by PGN was not altered by the absence of MD-2 in vivo. Collectively, MD-2 is essential for the recognition of LPS by TLR4 but not for that of PGN by TLR2 of mast cells.  相似文献   

3.
The aim of study was to compare the potency of different bacterial antigens to induce rat mature mast cell to cysteinyl leukotriene (cysLT) generation. We examined Toll-like receptor (TLR)2 agonists, i.e. lipoteichoic acid (LTA) Staphylococcus faecalis, Streptococcus pyogenes, Bacillus subtilis and Staphylococcus aureus, lipoarabinomannan (LAM) Mycobacterium smegmatis, peptydoglican (PGN) Staphylococcus aureus, as well as TLR4 agonists, i.e. lipopolysaccharide (LPS) Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enteritidis, Pophyromonas gingivalis and Escherichia coli. We also estimated the effect of tumor necrosis factor (TNF)-, interleukin (IL)-6-, CCL5-, and IL-10-priming on mast cell cysLT synthesis following bacterial antigen activation. We found that all bacterial antigens activated mast cells to cysLT generation; however, the extent of cysLT release in response to stimulation varied. Out of the examined antigens LPS P. gingivalis exhibited the highest potency, as it induced cysLT generation acting at a very low concentration (10(-4) ng/mL). Other LPSs affected mast cells at higher (up to 10(5) -fold) concentrations. LTAs were the most effective at concentrations of 5 × 10(2) ng/mL, while LAM and PGN stimulated mast cells to maximal cysLT generation at concentrations as high as 10(5) ng/mL. Anti-TLR2 and anti-TLR4 antibodies, as well as nuclear factor κB (NF-κB) inhibitor significantly diminished cysLT generation in response to bacterial antigen stimulation. Priming with TNF, IL-6 and CCL5 did not affect bacterial antigen-induced cysLT generation, while IL-10-pretreatment caused significant decrease in cysLT synthesis by mast cells. These observations might have a great pathophysiological importance; inasmuch cysLTs strongly influence the development and intensity of inflammation during bacterial infection.  相似文献   

4.
We have investigated the ability of lipopolysaccharides (LPS) and lipoteichoic acids (LTA) to induce rat peritoneal mast cells to degranulation and histamine release, and to cysteinyl leukotriene (LT) generation. We have stated that LPS Salmonella Enteritidis, LPS Escherichia coli O111:B4 and LPS E. coli O55:B5 did not activate rat mast cells to degranulation and histamine release. However, LPSs induced LT synthesis and secretion; the strongest stimulant to generation of LT was LPS E. coli O55:B5 (concentration of LT in supernatant was 830.5 +/-15.2 pg/ml). We have also observed that LTA Staphylococcus aureus and LTA Bacillus subtilis stimulated rat mast cells to degranulation and histamine secretion, even though the percentage of the releases histamine was relatively low (10.0 +/- 1.4 and 10.4 +/- 5.4 at antigen concentration, respectively). At the same time, LTA of both of the bacterial species strongly activate LT generation by mast cells (concentrations of LT in supernatants were 777.9 +/- 11.2 pg/ml and 734.0 +/- 38.3 pg/ml, respectively, at the antigen concentration 50 ng/ml). Our results have shown that LPS oraz LTA activate rat mast cells to secretion of proinflammatory mediators.  相似文献   

5.
Mast cells may have either antitumor or tumor-promoting potential. Nevertheless, mast cells in tumor microenvironment have been found to promote tumor growth. So far the mechanisms underlying the modulation of mast cell function in tumor microenvironment remains to be fully elucidated. Here, we report that tumor-promoting potential of mast cells could be augmented by molecules released from damaged tumor cells through cooperative stimulation of stem cell factor (SCF) and ligand for Toll-like receptor 4 (TLR4). Co-simulation with SCF and TLR4 ligand inhibited mast cell degranulation, but efficiently induced the production and secretion of VEGF, PDGF, and IL-10. Although TLR4 ligand alone may induce IL-12 expression in mast cells, co-stimulation with SCF and TLR4 ligand induced the expression of IL-10, but not IL-12, in mast cells. The phosphorylation of GSK3β was crucial for the effect of SCF and TLR4 ligand. In addition to inducing phosphorylation of GSK3β at Ser9 through PI3K pathway, SCF and TLR4 ligand cooperated to induce phosphorylation of GSK3β at Tyr216 by simultaneous activation of ERK and p38MAPK pathways. Both phospho-Ser9 and phospho-Tyr216 of GSK3β were required for IL-10 expression induced by SCF/TLR4 ligand, whereas suppressive effect of SCF/TLR4 ligand on mast cell degranulation was related to phospho-Tyr216. Importantly, the effect of SCF and TLR4 ligand on mast cells could be abrogated by inhibiting phosphorylation of GSK3β at Tyr216. These findings disclose the mechanisms underlying the modulation of mast cell function in tumor microenvironment, and suggest that inhibiting GSK3β in mast cells will be beneficial to the treatment of cancer.  相似文献   

6.
In the skin, there are unique dendritic cells called Langerhans cells, however, it remains unclear why this particular type of dendritic cell resides in the epidermis. Langerhans cell-like dendritic cells (LCs) can be generated from CD14(+) monocytes in the presence of GM-CSF, IL-4, and TGF-beta1. We compared LCs with monocyte-derived dendritic cells (DCs) generated from CD14(+) monocytes in the presence of GM-CSF and IL-4 and examined the effect of exposure to two distinct bacterial stimuli via Toll-like receptors (TLRs), such as peptidoglycan (PGN) and lipopolysaccharide (LPS) on LCs and DCs. Although stimulation with both ligands induced a marked up-regulation of CD83 expression on DCs, PGN but not LPS elicited up-regulation of expression CD83 on LCs. Consistent with these results, TLR2 and TLR4 were expressed on DCs, whereas only TLR2 was weakly detected on LCs. These findings suggest the actual feature of epidermal Langerhans cells with low-responsiveness to skin commensals.  相似文献   

7.
PGE(2) is an endogenously synthesized inflammatory mediator that is over-produced in chronic inflammatory disorders such as allergic asthma. In this study, we investigated the regulatory effects of PGE(2) on mast cell degranulation and the production of cytokines relevant to allergic disease. Murine bone marrow-derived mast cells (BMMC) were treated with PGE(2) alone or in the context of IgE-mediated activation. PGE(2) treatment alone specifically enhanced IL-6 production, and neither induced nor inhibited degranulation and the release of other mast cell cytokines, including IL-4, IL-10, IFN-gamma, and GM-CSF. IgE/Ag-mediated activation of BMMC induced the secretion of IL-4, IL-6, and GM-CSF, and concurrent PGE(2) stimulation synergistically increased mast cell degranulation and IL-6 and GM-CSF, but not IL-4, production. A similar potentiation of degranulation and IL-6 production by PGE(2), in the context of IgE-directed activation, was observed in the well-established IL-3-dependent murine mast cell line, MC/9. RT-PCR analysis of unstimulated MC/9 cells revealed the expression of EP(1), EP(3), and EP(4) PGE receptor subtypes, including a novel splice variant of the EP(1) receptor. Pharmacological studies using PGE receptor subtype-selective analogs showed that the potentiation of IgE/Ag-induced degranulation and IL-6 production by PGE(2) is mediated through EP(1) and/or EP(3) receptors. Our results suggest that PGE(2) may profoundly alter the nature of the mast cell degranulation and cytokine responses at sites of allergic inflammation through an EP(1)/EP(3)-dependent mechanism.  相似文献   

8.
Nowadays there is more and more evidence that mast cells take part in antibacterial defence. Mast cells have the ability to kill bacteria via phagocytose‐dependent or phagocytose‐independent ways and express antimicrobial peptides that can directly kill pathogens at their site of entry. What is more, mast cells are capable of processing bacterial antigens for presentation through class I and II MHC molecules. Some data indicate that these cells can release various proinflammatory mediators in response to activation with bacteria and/or their products, however this information is still far from complete. Therefore, in this study we examined the ability of PGN from Staphylococcus aureus, LPS from Eschericha coli and LAM from Mycobacterium smegmatis to stimulate mature rat mast cell degranulation as well as cysteinyl LT generation. We also studied the influence of these bacterial components on mast cell migration. We found that PGN, LPS and LAM all failed to induce mast cell degranulation and histamine release. At the same time, activation of mast cells with these bacterial antigens resulted in generation and release of significant amounts of LT. Moreover, we documented that, even in the presence of laminin, none of the bacterial antigens used stimulated mast cell migration. However, PGN did induce migration of RANTES‐primed mast cells, and LPS did stimulate mast cell migratory response after priming with IL‐6. Our results show that PGN, LPS and LAM might be among the important bacterial antigens involved in mast cell activation during bacterial infection.  相似文献   

9.
Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed α, β, and γ subunits of high-affinity immunoglobulin E (IgE) receptor (FcεRI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesis and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-α, and cyclooxygenase 2, and production of prostaglandin D(2) and leukotriene C(4) in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-α expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on FcεRI- and TLR-mediated effector functions of mast cells.  相似文献   

10.
Mast cells are pivotal in the pathogenesis of allergy and inflammation. In addition to the classical IgE-dependent mechanism involving crosslinking of the high-affinity receptor for IgE (FcεRI), mast cells are also activated by Toll-like receptors (TLRs) which are at the center of innate immunity. In this study, we demonstrated that the response of LAD2 cells (a human mast cell line) to anti-IgE was altered in the presence of the TLR2 agonists peptidoglycan (PGN) and tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3CSK4). Pretreatment of PGN and Pam3CSK4 inhibited anti-IgE induced calcium mobilization and degranulation without down-regulation of FcεRI expression. Pam3CSK4 but not PGN acted in synergy with anti-IgE for IL-8 release when the TLR2 agonist was added simultaneously with anti-IgE. Studies with inhibitors of key enzymes implicated in mast cell signaling revealed that the synergistic release of IL-8 induced by Pam3CSK4 and anti-IgE involved ERK and calcineurin signaling cascades. The differential modulations of anti-IgE induced mast cell activation by PGN and Pam3CSK4 suggest that dimerization of TLR2 with TLR1 or TLR6 produced different modulating actions on FcεRI mediated human mast cell activation.  相似文献   

11.
Mature mast cells are generally considered to be less mobile cells residing within tissue sites. However, mast cell numbers are known to increase in the context of inflammation, and mast cells are recognized to be important in regulating local neutrophil infiltration. CXC chemokines may play a critical role in this process. In this study two human mast cell-like lines, HMC-1 and KU812, and human cord blood-derived primary cultured mast cells were employed to examine role of stromal cell-derived factor-1 (SDF-1) in regulating mast cell migration and mediator production. It was demonstrated that human mast cells constitutively express mRNA and protein for CXCR4. Stimulation of human mast cells with SDF-1, the only known ligand for CXCR4, induced a significant increase in intracellular calcium levels. In vitro, SDF-1 alpha mediated dose-dependent migration of human cord blood-derived mast cells and HMC-1 cells across HUVEC monolayers. Although SDF-1 alpha did not induce mast cell degranulation, it selectively stimulated production of the neutrophil chemoattractant IL-8 without affecting TNF-alpha, IL-1beta, IL-6, GM-CSF, IFN-gamma, or RANTES production, providing further evidence of the selective modulation of mast cell function by this chemokine. These findings provide a novel, SDF-1-dependent mechanism for mast cell transendothelial migration and functional regulation, which may have important implications for the local regulation of mast cells in disease.  相似文献   

12.
Severe dengue virus infections usually occur in individuals who have preexisting anti-dengue virus antibodies. Mast cells are known to play an important role in host defense against several pathogens, but their role in viral infection has not yet been elucidated. The effects of dengue virus infection on the production of chemokines by human mast cells were examined. Elevated levels of secreted RANTES, MIP-1alpha, and MIP-1beta, but not IL-8 or ENA-78, were observed following infection of KU812 or HMC-1 human mast cell-basophil lines. In some cases a >200-fold increase in RANTES production was observed. Cord blood-derived cultured human mast cells treated with dengue virus in the presence of subneutralizing concentrations of dengue virus-specific antibody also demonstrated significantly (P < 0.05) increased RANTES production, under conditions which did not induce significant degranulation. Chemokine responses were not observed when mast cells were treated with UV-inactivated dengue virus in the presence or absence of human dengue virus-specific antibody. Neither antibody-enhanced dengue virus infection of the highly permissive U937 monocytic cell line nor adenovirus infection of mast cells induced a RANTES, MIP-1alpha, or MIP-1beta response, demonstrating a selective mast cell response to dengue virus. These results suggest a role for mast cells in the initiation of chemokine-dependent host responses to dengue virus infection.  相似文献   

13.
14.
Nerve growth factor (NGF) is well recognized to have a number of potent effects on mast cells, including increasing mast cell numbers in vivo and inducing mast cell degranulation in vitro. More recently, NGF has been demonstrated to induce PGD2 production by mast cells through the induction of mast cell cyclooxygenase expression. We have observed that NGF at doses as low as 10 ng/ml will induce IL-6 production and inhibit TNF-alpha release from rat peritoneal mast cells in the presence of lysophosphatidylserine as a cofactor. NGF synergizes with LPS treatment of peritoneal mast cells (PMC) for the induction of IL-6. Examination of the mechanism of this phenomenon has revealed that NGF can induce both rat PMC and mouse bone marrow-derived cultured mast cells to produce substantial levels of PGE2. This response is maximal at later time points 18-24 h after NGF activation. The ability of NGF to induce PGE2 is not dependent on mast cell degranulation. Other stimuli capable of inducing IL-6, such as LPS, do not induce production of this prostanoid. Inhibition of cyclooxygenase activity by PMC using either flurbiprofen or indomethacin inhibited both the NGF-induced PGE2 synthesis and the NGF-induced alterations in TNF-alpha and IL-6 production. These results suggest a role for mast cell-derived prostanoids in the regulation of local inflammatory responses and neuronal degeneration after tissue injury involving induction of NGF production.  相似文献   

15.
Intact Gram-positive bacteria induce production of large amounts of IL-12 from freshly isolated human monocytes. Here the bacterial structures and signalling pathways involved were studied and compared with those leading to IL-6 production, and to IL-12 production in response to LPS after IFN-gamma pre-treatment. Intact bifidobacteria induced massive production of IL-12 (1 ng/ml) and IL-6 (>30 ng/ml) from human PBMC, whereas fragmented bifidobacteria induced IL-6, but no IL-12. IL-12 production induced by intact bifidobacteria was inhibited by pre-treatment with bifidobacterial sonicate, peptidoglycan, muramyl dipeptide, lipoteichoic acid, the soluble TLR2 agonist Pam(3)Cys-SK(4), or anti-TLR2 antibodies. Blocking of phagocytosis by cytochalasin, inhibition of the JNK or NF-kappaB pathways or treatment with Wortmannin also reduced the IL-12 response to intact Gram-positive bacteria. LPS induced moderate levels of IL-12 (0.31 ng/ml), but only from IFN-gamma pre-treated PBMC. This IL-12 production was enhanced by Wortmannin and unaffected by blocking the JNK pathway. Thus, intact Gram-positive bacteria trigger monocyte production of large amounts of IL-12 via a distinct pathway that is turned off by fragmented Gram-positive bacteria. This may be a physiological feedback, since such fragments may signal that further activation of the phagocyte via the IL-12/IFN-gamma loop is unnecessary.  相似文献   

16.

Background

Pattern-recognition receptors (PRRs), including Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs), recognize microbial components and trigger a host defense response. Respiratory tract infections are common causes of asthma exacerbations, suggesting a role for PRRs in this process. The present study aimed to examine the expression and function of PRRs on human airway smooth muscle cells (HASMCs).

Methods

Expression of TLR, NLR and RLR mRNA and proteins was determined using real-time RT-PCR, flow cytometry and immunocytochemistry. The functional responses to ligand stimulation were investigated in terms of cytokine and chemokine release, cell surface marker expression, proliferation and proteins regulating the contractile state.

Results

HASMCs expressed functional TLR2, TLR3, TLR4, TLR7 and NOD1. Stimulation with the corresponding agonists Pam3CSK4, poly(I:C), LPS, R-837 and iE-DAP, respectively, induced IL-6, IL-8 and GM-CSF release and up-regulation of ICAM-1 and HLA-DR, while poly(I:C) also affected the release of eotaxin and RANTES. The proliferative response was slightly increased by LPS. Stimulation, most prominently with poly(I:C), down-regulated myosin light chain kinase and cysteinyl leukotriene 1 receptor expression and up-regulated β2-adrenoceptor expression. No effects were seen for agonist to TLR2/6, TLR5, TLR8, TLR9, NOD2 or RIG-I/MDA-5.

Conclusion

Activation of TLR2, TLR3, TLR4, TLR7 and NOD1 favors a synthetic phenotype, characterized by an increased ability to release inflammatory mediators, acquire immunomodulatory properties by recruiting and interacting with other cells, and reduce the contractile state. The PRRs might therefore be of therapeutic use in the management of asthma and infection-induced disease exacerbations.  相似文献   

17.
We have previously reported that lipopolysaccharide (LPS) could induce the production of interleukin-3 (IL-3) by mouse spleen cells. In the present study, we show that recombinant human interleukin-1, in the absence of other stimuli, is able to induce the production of IL-3. IL-3 was detected in the supernatants of adult, although neither in young nor in nude mouse splenocytes and was assessed by its capacity to support the growth of the IL-3-dependent FDC-P2 cell line. The presence of IL-3 was antigenically confirmed with a monoclonal anti-IL-3 antibody. Both recombinant IL-1 alpha and IL-1 beta had similar potential for inducing IL-3 production. IL-3 activity was detected in the supernatants of cells cultured in the presence of 100 pg/ml IL-1; maximal IL-3 levels were obtained with 10-30 ng/ml IL-1. Kinetic studies of IL-1-induced IL-3 production indicated that 4-6 days of culture were required for optimal production, whereas 1-2 days were sufficient in cultures stimulated with concanavalin A. Recombinant IL-6 failed to induce significant amounts of IL-3, and TNF alpha induced only weak IL-3 production. GM-CSF but not M-CSF could lead to the appearance of IL-3 in spleen cell culture supernatants. Removal of macrophages decreased the production of IL-3 induced by LPS and GMF-CSF though did not affect the IL-3 production induced by IL-1. This observation suggests that IL-1 production might be an intermediate event in IL-3 production induced by LPS and GM-CSF through the activation of macrophages. IL-3 was detected in culture supernatants of B-cell-depleted splenocytes indicating that T-cells were the source of IL-3. Surprisingly T-cell-depleted populations could also produce IL-3 upon IL-1 stimulation. Preliminary experiments with an autoreactive CD4- CD8- V beta 8+ clone suggested that these cells might also be involved in the described IL-3 production.  相似文献   

18.
Human Toll-like receptor (TLR) 4 and TLR2 receptors recognize LPS or lipoteichoic acid (LTA), respectively. Prolonged exposure of human macrophages/monocytes to bacterial LPS induces a state of adaptation/tolerance to subsequent LPS challenge. Inflammatory gene expressions such as IL-1beta and TNF-alpha are selectively repressed, while certain anti-inflammatory genes such as secretory IL-1R antagonist are still induced in LPS-adapted/tolerant cells. In this report, we demonstrate that LPS-tolerized human promonocytic THP-1 cells develop cross-tolerance and no longer respond to LTA-induced IL-1beta/TNF-alpha production, indicating that disruption of common intracellular signaling is responsible for the decreased IL-1beta/TNF-alpha production. We observe that down-regulation of IL-1R-associated kinase (IRAK) protein level and kinase activity closely correlates with the development of cross-tolerance. IRAK protein levels and kinase activities in LPS-tolerized cells remain low and hyporesponsive to subsequent LPS or LTA challenges. We also demonstrate that THP-1 cells with prolonged LTA treatment develop LTA tolerance and do not express IL-1beta/TNF-alpha upon further LTA challenge. Strikingly, cells tolerized with LTA are only refractory to subsequent LTA challenge and can still respond to LPS stimulation. Correspondingly, stimulation of TLR2 by LTA, although activating IRAK, does not cause IRAK degradation. IRAK from LTA-tolerized cells can be subsequently activated and degraded by further LPS challenge, but not LTA treatment. Our studies reveal that LTA-induced tolerance is distinct compared with that of LPS tolerance, and is likely due to disruption of unique TLR2 signaling components upstream of MyD88/IRAK.  相似文献   

19.
20.
The production of IL-8 can be induced by LPS via TLR4 signaling pathway. In this study, we tested the effect of a herbal melanin (HM) extract, from black cumin seeds (Nigella sativa L.), on IL-8 production. We used HM and LPS in parallel to induce IL-8 production by THP-I, PBMCs, and TLR4-transfected HEK293 cells. Both HM and LPS induced IL-8 mRNA expression and protein production in THP-1 and PBMCs. On applying similar treatment to HEK293 cells that express TLR4, MD2, and CD14, both HM and LPS significantly induced IL-8 protein production. We have also demonstrated that HM and LPS had identical effects in terms of IL-8 stimulation by HEK293 transfected with either TLR4 or MD2-CD14. Melanin extracted from N. sativa L. mimics the action of LPS in the induction of IL-8 by PBMC and the other used cell lines. Our results suggest that HM may share a signaling pathway with LPS that involves TLR4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号