首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spermine-binding activity of a cytosolic protein from chick intestine increases during embryogenesis and in the first week of life. Ornithine and S-adenosylmethionine decarboxylase activities assayed under the same experimental conditions increase showing a maximum at day 18 and 20 respectively. The behaviour of either enzyme activity is reflected in the pattern of duodenal polyamine concentration measured during the same period. The possibility that duodenal spermine-binding protein may be correlated with spermine accumulation in the tissue is discussed.  相似文献   

2.
3.
The activities of cyclic AMP phosphodiesterase (3',5'-cyclic nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) and adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] and calmodulin content during development of chick ventricular myocardium were determined. The specific activity of cyclic AMP phosphodiesterase was relatively low in early embryos, increased during embryogenesis by about 4-fold to reach highest values just before hatching, and then decreased by approx. 30% within 1 week after hatching. In contrast, adenylate cyclase did not change during embryonic development, but increased by approx. 50% within 1 week after hatching. Calmodulin content remained constant at 9 micrograms/g wet wt. during embryonic development and decreased to 6 micrograms/g wet wt. by 1 week after hatching. DEAE-Sephacel chromatography of chick ventricular supernatant revealed a single major form of cyclic nucleotide phosphodiesterase activity in early embryonic (9-day E) and hatched (6-day H) chicks. This enzyme form was eluted at approx. 0.27 M-sodium acetate, hydrolysed both cyclic AMP and cyclic GMP, and was sensitive to stimulation by Ca2+-calmodulin, with an apparent Km for calmodulin of approx. 1 nM. In contrast, ventricular supernatant from late-embryonic (18-day E) chicks contained two forms of phosphodiesterase separable on DEAE-Sephacel: the same form as that seen at other ages, plus a cyclic AMP-specific form which was eluted at approx. 0.65 M-sodium acetate and was insensitive to stimulation by Ca2+-calmodulin. The ontogenetic changes in cyclic AMP phosphodiesterase activity in chick ventricular myocardium are consistent with reported ontogenetic changes in the steady-state contents of cyclic AMP in this tissue and suggest that this enzyme may be responsible for the changes that occur in this nucleotide during development of chick myocardium.  相似文献   

4.
Catecholamine and indoleamine levels were determined in cultured neurons from chick embryos and in the homologous embryonic cerebral hemispheres in order to study their neurotransmission systems. The seeding of a large number of cells resulted in a pure neuronal culture made of clusters interconnected by processes. Norepinephrine, which was absent from the starting material of the culture, appeared on the 2nd day and then decreased. A small amount of epinephrine was present on the 2nd day and decreased thereafter. Dopamine was not detected. In the cerebral hemispheres of chick embryos, dopamine appreared on the 10th day in ovo and increased steadily up to the 18th day. Epinephrine was also present in the cerebral hemispheres. Its level increased up to the 14th day and then decreased. Indoleamines were measured in the same material. The level of serotonin was markedly higher than that of catecholamines and it increased during cultivation. Tryptophan was already present in the starting material and its amount increased during cultivation. The level of 5-hydroxyindoleacetic acid changed like that of serotonin. In the embryonic cerebral hemispheres, the concentration of serotonin was highest on the 12th day after incubation and then decreased. Tryptophan level decreased steadily all during the embryogenesis. These results were discussed on the ground of differences in the synthesized neurotransmitters.  相似文献   

5.
6.
A technique by which genes can be introduced into the cells and tissues of developing embryos has great potential for studying the roles of genes during vertebrate embryogenesis. The 'microelectroporation' technique, in which DNA is introduced into cells within a restricted area of developing chick embryos with high reproducibility, was developed by the authors. In this review, the advantages and applications of this microelectroporation technique for developmental studies and functional analysis of genes in chick embryos is discussed.  相似文献   

7.
8.
A major gap in our knowledge of development is how the growth and identity of tissues and organs are linked during embryogenesis. The vertebrate limb is one of the best models to study these processes. Combining mutant analyses with gain- and loss-of-function approaches in zebrafish and chick embryos, we show that Tbx5, in addition to its role governing forelimb identity, is both necessary and sufficient for limb outgrowth. We find that Tbx5 functions downstream of WNT signaling to regulate Fgf10, which, in turn, maintains Tbx5 expression during limb outgrowth. Furthermore, our results indicate that Tbx5 and Wnt2b function together to initiate and specify forelimb outgrowth and identity. The molecular interactions governed by members of the T-box, Wnt and Fgf gene families uncovered in this study provide a framework for understanding not only limb development, but how outgrowth and identity of other tissues and organs of the embryo may be regulated.  相似文献   

9.
In the present study we investigated the changes of plasma lipids, lipoproteins, and tissue lipids that occur during the late embryonic life (5 days before hatching) and the postnatal period (0, 2, 7, 14, and 30 days after hatching) of the chick. The chick emerges from the egg with extreme hypercholesterolemia associated with a high level of cholesterol-rich VLDL + IDL. The density gradient profile of plasma lipoproteins showed that the concentrations of VLDL + IDL and LDL decreased during the first week of postnatal life, whereas HDL concentration increased sharply around hatching and remained stable afterwards. All plasma lipoprotein classes of the newborn chick (2 days from hatching) were enriched in cholesterol and cholesteryl esters; 2 weeks after hatching, the relative amount of cholesterol and cholesteryl esters decreased. In the newborn chick, plasma VLDL + IDL consisted of two populations of cholesteryl ester-rich lipoproteins: the main one (designated apoB-VLDL) contained apoB and no apoA-I; the other (designated apoA-I-VLDL) contained predominantly apoA-I. In the newborn chick there was an accumulation of free and esterified cholesterol in the liver and, to a lesser extent, in the skeletal muscle. These cholesterol deposits were depleted 2 to 7 days after hatching. The depletion in skeletal muscle was preceded by and associated with a striking increase in the synthesis of apoA-I in this tissue, as demonstrated by immunological methods and apoA-I mRNA measurements. In addition, apoA-I-containing HDL were secreted in vitro by explants of skeletal muscle of the newborn chick. The synthesis of apoA-I in the skeletal muscle decreased to the level found in the adult animal 1 week after hatching. It is likely that the rise of HDL and apoA-I in plasma observed 1-2 days after hatching reflects the production of apoA-I-containing HDL by skeletal muscle. We suggest that the cholesterol overload in skeletal muscle might stimulate the production of apoA-I which, in turn, would promote the removal of cholesterol from this tissue. The hypothesis that metabolic stimuli play a role in inducing apoA-I synthesis in skeletal muscle is supported by the observation that feeding the newborn chick a diet rich in proteins and lipids and free of carbohydrates delays the fall of apoA-I mRNA which normally occurs 1 week after hatching.  相似文献   

10.
枸杞体细胞胚发生过程中Ag^+对痕量金属离子吸收的影响   总被引:1,自引:0,他引:1  
李杉  秦芝 《实验生物学报》2001,34(2):127-130
We used callus of medical plant, Ningxia Lycium barbarum. L as material to induce somatic embryo genesis, and used multitracer technique and gamma-ray energy spectrum analytical method to study different concentration of AgNO3 on some absorption of trace metal ions during the somatic embryogenesis of Lycium barbarum. L. The results show that (1) when the concentration of AgNO3 is less then 50 mg/L, with the increase of AgNO3 concentration, the absorption rate of some metal ions is increasing, but when the concentration is excess of such concentration, the effects on the absorption rate are different. Ag+ has the effect of coordination, resistance or competition on the absorption of metal ions. (2) AgNO3 in suitable concentration will promote cell differentiation and somatic embryogenesis. When the concentration of AgNO3 is less then 50 mg/L, along with the increase of the concentration, the frequency of somatic embryogenesis is increased, and Ag+ has the promotion on the somatic embryogenesis of Lycium barbarum. L. While the concentration is up to 50 mg/L, it will mostly raise somatic embryogenesis in calli, the amount of callus is about 3 times as much as that of contrast group (in which AgNO3 is not added). When excess of this concentration point, Ag+ has toxic effect, and the somatic embryogenesis is inhibited remarkably.  相似文献   

11.
Decreasing the K+ concentration of the medium from 5 mM to 0.59 mM decreased the K+ content of chick embryo fibroblasts to 22% of control values and increased the Na+ content to 820% of control values. The alteration of monovalent cation content occurred within two hours but had no effect on the rate of DNA synthesis, as measured by 3H-thymidine incorporation, for at least 16 hours. By decreasing the Na+ concentration in the medium, a 50% reduction in cellular Na+ could be obtained with no effect on thymidine incorporation. Since these changes in cellular Na+ or K+ are much larger than any known to occur under physiological conditions but have no effect on thymidine incorporation, we conclude that Na+ and K+ do not play a critical role in determining multiplication rate. Addition of 1.8 mEGTA to cells in media containing 1.7 mM Ca2+ and 0.8 mM Mg2+ inhibited thymidine incorporation and sharply decreased cellular K+ and increased cellular Na+ content. However, there was no reduction in total cellular Ca2+ levels. Likewise, decreasing the Ca2+ concentration of the medium below 0.01 mM inhibited thymidine incorporation, decreased cellular K+ and Mg2+, and increased cellular Na+ but did not affect total cellular Ca2+ levels. Inhibition of DNA synthesis, therefore, could not be correlated with changes in cellular Ca2+ levels.  相似文献   

12.
In 10-, 14-and 18-days-old chick embryos, concentrations of total protein and nucleic acids (NA) were measured using spectrophotometry in liver, brain, red gastrocnemial and white pectoral muscles and in chorioallantois. It was shown that the initial protein and NA concentration was the highest in liver and decreased markedly in the above-mentioned organs. At the second half of embryogenesis, concentration of organ protein increased 4 times in muscles, 2 times in brain, and 1.4 times in liver. This indicates a rise of cell density in the organs or of the intracellular protein concentration. The protein/NA ratio reflecting the cell size or concentration of their protein practically did not change in liver, but increased 2.3 and 2.5 times in pectoral and gastrocnemial muscles, respectively, and 2 times in brain. In chorioallantois the maximal protein concentration was observed in then 14-day old embryos, with the protein/NA ratio remaining practically unchanged.  相似文献   

13.
14.
The inter-relationship between exogenous calcium (Ca2+) during cold pretreatment and cold-enhanced somatic embryogenesis was investigated using cell suspension cultures of Astragalus adsurgens Pall. Cell suspension was obtained from embryogenic callus and could be induced to form somatic embryos in the differentiation medium. Suspension cells, after cold-treatment at 8 °C for 2 to 3 wk, displayed an enhanced capacity for somatic embryogenesis as compared to those without cold pretreatment. Longer cold pretreatment (> 4 wk) resulted in the inhibition of somatic embryogenesis. The enhanced embryogenic response of cells to cold pretreatment was dependent on the Ca2+ level in the pretreatment medium. Ca2+ levels below 1 mM suppressed the cold-enhanced response. Addition of lanthanum into the pretreatment medium completely abolished the cold induced enhancement of somatic embryogenesis. These results suggest that embryogenic cells require a minimal concentration of Ca2+ during pretreatment for the expression of this cold-enhanced capacity for somatic embryogenesis in A.adsurgens and the influx of exogenous Ca2+ during pretreatment might also be involved.  相似文献   

15.
Cocoa breeders and growers continue to face the problem of high heterogeneity between individuals derived from one progeny. Vegetative propagation by somatic embryogenesis could be a way to increase genetic gains in the field. Somatic embryogenesis in cocoa is difficult and this species is considered as recalcitrant. This study was conducted to investigate the phenolic composition of cocoa flowers (the explants used to achieve somatic embryogenesis) and how it changes during the process, by means of histochemistry and conventional chemical techniques. In flowers, all parts contained polyphenolics but their locations were specific to the organ considered. After placing floral explants in vitro, the polyphenolic content was qualitatively modified and maintained in the calli throughout the culture process. Among the new polyphenolics, the three most abundant were isolated and characterized by 1H- and 13C-NMR. They were hydroxycinnamic acid amides: N-trans-caffeoyl-l-DOPA or clovamide, N-trans-p-coumaroyl-l-tyrosine or deoxiclovamide, and N-trans-caffeoyl-l-tyrosine. The same compounds were found also in fresh, unfermented cocoa beans. The synthesis kinetics for these compounds in calli, under different somatic embryogenesis conditions, revealed a higher concentration under non-embryogenic conditions. Given the antioxidant nature of these compounds, they could reflect the stress status of the tissues.  相似文献   

16.
A chick genomic clone that reveals a high degree of homology to the mammalian and Xenopus bFGF gene has been isolated. The pattern of expression of bFGF has been examined during early chick embryogenesis. RNA blot analysis revealed that chick bFGF is already transcribed at pregastrula stages. Immunolabeling analysis indicated that bFGF protein is present at these early developmental stages and is distributed evenly in the epiblast, hypoblast and marginal zone of the chick blastula. Substances that can inhibit FGF action were applied to early chick blastoderms grown in vitro under defined culture conditions (DCM). Both heparin and suramin were capable of blocking the formation of mesodermal structures in a dose-dependent manner. Our results indicate that FGF-like substances may need to be present for axial structures to develop although they may be acting earlier during the induction of non-axial mesoderm.  相似文献   

17.
18.
Nerve growth factor (NGF) and most neurotrophic factors support the proliferation and survival of particular types of neurons. Besidesthe pivotal role of NGF in the development of neuronal cells, it also has important functions on non-neuronal cells. The amnion surrounds the embryo, providing an aqueous environment for the embryo. A wide range of proteins has been identified in human amniotic fluid (AF). In this study, total protein concentration (TPC) and NGF level in AF samples from chick embryos were measured using a Bio-Rad protein assay, enzyme linked immunosorbent assay (ELISA) and Western blot. TPC increased from days E10 to day E18. There was a rapid increase in AF TPC on day E15 when compared to day E16. No significant changes in NGF levels have been seen from day E10 to day E14. There was a rapid increase in NGF content on days E15 and E16, and thereafter the levels decreased from day E16 to day E18. Since, NGF is important in brain development and changes in AF NGF levels have been seen in some CNS malformations, changes in the TPC and NGF levels in AF during chick embryonic development may be correlated with cerebral cortical development. It is also concluded that NGF is a constant component of the AF during chick embryogenesis.  相似文献   

19.
Changes in the concentration of cytochromes c, c1 and a in the liver and heart homogenates during chick pre- and postnatal development were detected by means of low temperature differential spectrometry. At the early stages of development the high content of respiratory enzymes comparable with that in the adult organism is noted. By the end of embryogenesis the content of cytochromes decreased and, subsequently, increased. The injection of thyroxine in the 16-17 days old embryos and 9-10 days old chickes resulted in more distinct changes in the content of respiratory enzymes in mitochondria of the heart, as compared with those of the liver. No changes in the content of cytochromes were recorded after the injection of 6-methyl thiouracyl in the 10 days old embryos, thus suggesting the inactive state of thyroid parenchyma during this period of development.  相似文献   

20.
By electrophoretic and immunological assay the concentration of hepatic metallothionein in new born chick liver was found to be ontogenically modulated, reaching a peak accumulation per gram liver in fourth day of hatching and declining below the detection limit after second week postnatal. The protein was undetectable upto second week of incubation in egg-embryonic stage. The concentration of metallothionein mRNA shows drastic change during first few days after hatching. The greatest accumulation of metallothionein mRNA was detected in the one day new born chicks, which declined rapidly there after, and reduced to a barely detectable level. Metallothionein was also detected in the in vitro translated product of one day neonatal chick hepatic poly(A+) RNA by S-cysteine labelling and immunoprecipitation. The naturally occurring new-born chick liver metallothionein was found to be a zinc-metallothionein and the concentration of hepatic zinc in new-born chick was found to undergo drastic modulation during development, unlike some other chick tissues. Endogenous zinc ion mobilization can thus play a significant role in the developmental regulation of chick metallothionein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号