首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Voltage-dependent K+ channels are responsible for repolarization of the cell membrane during the late phase of the action potential. Here we report the purification of proteins from squid axon membranes which bind the K+-channel blocker noxiustoxin (NTX), and their subsequent functional reconstitution in planar bilayers. The NXT-affinity purified proteins had Mr values of 60000 ± 6000, 160000 ± 15000 and 220000 ± 20000. Their incorporation into bilayers resulted in single-channel currents with three conductances, the most frequent one of 11 pS in 300/100 mM KCl (cis/trans). The voltage dependence, reversal potential and bursting behavior suggest that these are the K+ channels involved in the squid axon action potential.  相似文献   

4.
5.
Summary Plasma membranes were isolated from two types of squid nerves which have morphologically, different ratios of axolemma/Schwannlemma (A/S). These membranes were studied by means of differential and density gradient centrifugation.Thoroughly dissected giant axons were used as membrane source having low A/S ratio. Retinal fibers were used as membrane source with high A/S ratio. A similar procedure for the isolation of the plasma membranes was used for both types of squid axons.Differential centrifugation showed that at 1,500×g, the yield of membrane enzymes (Na, K-ATPase and NADH-ferricyanide oxidoreductase) from giant axon homogenates was 2 to 5 times greater than from retinal nerve homogenates, but at 105,000×g the opposite was the case, the yield from retinal axons being about two times greater. Thus, the major part of the membrane material from the retinal nerve seems to be less dense than the membrane material from giant axons.The behavior of the 105,000×g fraction from both types of fibers was studied by determining protein Na, K-ATPase, and NADH-oxidoreductase along a lineal sucrose gradient (10 to 40%; centrifuged at 40,600×g for 90 min). By any of the three measurements, retinal axons yielded a greater amount (2:1) of plasma membranes sedimenting at low sucrose concentration (16 to 25%) as compared to that observed at high sucrose concentration (35 to 38%). Giant axons, on the contrary, yielded a higher proportion of membranes (2.5:1) sedimenting at high sucrose concentrations (over 40%).The experimental data indicate that a different cellular origin can account for the behavior of nerve membranes along lineal gradient centrifugation. The membranes floating at low sucrose concentration (light membranes) can be tentatively ascribed to the axolemma; the membranes found at high sucrose concentration (heavy membranes) to the Schwannlemma and basement membranes.In accord with their high A/S morphological ratio, squid retinal axons yielded 5 times more light membranes (axolemma) than dissected giant axons.  相似文献   

6.
Summary The lipid content and composition from an axolemma-rich preparation isolated from squid retinal axons was analyzed.The lipids, which accounted for 45.5% of the dry weight of this membrane, were composed of 22% cholesterol, 66.7% phospholipids and 5.2% free fatty acids. The negatively charged species phosphatidyl ethanolamine (37%), phosphatidyl serine (10%) and lysophosphatidyl ethanolamine (4%) made up 51% of the phospholipids. The amphoteric phosphatidyl choline and sphingomyelin accounted for 39% and 4%, respectively.The relative distribution of fatty acids in each of the isolated phospholipids was studied. The most remarkable feature of these phospholipids was the large proportion of long-chain polyunsaturated fatty acids. The 226 acyl chain accounted for 37% in phosphatidyl ethanolamine, 21.7% in phosphatidyl choline, 17.5% on phosphatidyl serine and 20.3% in sphingomyelin (all expressed as area %).The molar fraction of unsaturated fatty acids reached 65% in phosphatidyl ethanolamine and 42.0 and 44.8% in phosphatidyl choline and phosphatidyl serine, respectively. The double bond index in these species varied between 1.0 and 2.6.The lipid composition of the axolemma-rich preparation isolated from squid retinal axons appears to be similar to other excitable plasma membranes in two important features: (a) a low cholesterol/phospholipid molar ratio of 0.61; and (b) the polyunsaturated nature of the fatty acid of their phospholipids.This particular chemical composition may contribute a great deal to the molecular unstability of excitable membranes.The preceding papers of this series were published inArchives of Biochemistry and Biophysics.  相似文献   

7.
The effects of aminopyridines on ionic conductances of the squid giant axon membrane were examined using voltage clamp and internal perfusion techniques. 4-Aminopyridine (4-AP) reduced potassium currents, but had no effect upon transient sodium currents. The block of potassium channels by 4-AP was substantially less with (a) strong depolarization to positive membrane potentials, (b) increasing the duration of a given depolarizing step, and (c) increasing the frequency of step depolarizations. Experiments with high external potassium concentrations revealed that the effect of 4-AP was independent of the direction of potassium ion movement. Both 3- and 2-aminopyridine were indistinguishable from 4-AP except in potency. It is concluded that aminopyrimidines may be used as tools to block the potassium conductance in excitable membranes, but only within certain specific voltage and frequency limits.  相似文献   

8.
Sites binding monoiodinated-Bolton-Hunter-reagent-labelled substance P were solubilized from 1-day-old-chick brain membrane by using non-ionic detergents (1% digitonin/1% n-octyl glucoside) and a high concentration of NaCl (0.5 M). The solubilized preparation retained the pharmacological properties of the high-affinity binding sites found in the native membrane. The high density of specific binding sites (approximately 2 pmol of binding sites/mg of protein) suggests that the chick brain membranes may be a useful source for the purification of the substance P-binding sites.  相似文献   

9.
The effects of proteolytic enzymes on ionic conductances of squid axon membranes have been studied by means of the voltage clamp technique. When perfused internally alpha-chymotrypsin (1 mg/ml) increased and prolonged the depolarizing after-potential. Sodium inactivation was partially inhibited causing a prolonged sodium current, and peak sodium and steady-state potassium currents were suppressed. The time for sodium current to reach its peak was not affected. Leakage conductance increased later. On the other hand, carboxypeptidases A and B, both at 1mg/ml, suppressed the sodium and potassium conductance increases with little or no change in sodium inactivation. The mechanism that controls sodium inactivation appears to be associated with the structure of membrane proteins which is modified by alpha-chymotrypsin but not by carboxypeptidases and is located in a position accessible to alpha-chymotrypsin only from inside the membrane.  相似文献   

10.
To determine how the permeant cations interact with the sodium channel, the instantaneous current-voltage (I-V) relationship, conductance-ion concentration relationship, and cation selectivity of sodium channels were studied with internally perfused, voltage clamped squid giant axons in the presence of different permeant cations in the external solution. In Na-containing media, the instantaneous I-V curve was almost linear between +60 and -20 mV, but deviated from the linearity in the direction to decrease the current at more negative potentials. The linearity of instantaneous I-V curve extended to more negative potentials with lowering the external Ca concentration. The I-V curve in Li solution was almost the same as that in Na solution. The linearity of the I-V curve improved in NH4 solution exhibiting only saturation at -100 mV with no sign of further decrease in current at more negative potentials. Guanidine and formamidine further linearized the instantaneous I-V curve. The conductance of the sodium channels as measured from the tail current saturated at high concentrations of permeant cations. The apparent dissociation constants determined from the conductance-ion concentration curve at -60 mV were as follows: Na, 378 mM; Li, 247 mM; NH4, 174 mM; guanidine, 111 mM; formamidine, 103 mM. The ratio of the test cation permeability to the sodium permeability as measured from the reversal potentials of tail currents varied with the test cation concentration and/or the membrane potential. These observations are incompatible with the independence principle, and can be explained on the basis of the Eyring's rate theory. It is suggested that the slope of the instantaneous I-V curve is determined by the relative affinity of permeant cations and blocking ions (Ca) for the binding site in the sodium channel. The ionic selectivity of the channel depends on the energy barrier profile of the channel.  相似文献   

11.
The cation-sensitive p-nitrophenyl phosphatase of nerve membranes is inhibited by DFP and the non-phosphorylating analogue triisopropyl phosphate. The inhibition requires 5–20 mM concentrations and is partly irreversible. The inhibition is distinct from that produced by the non-ionic detergent lubrol. Under some conditions dithiothreitol can inhibit the enzyme activity; under other conditions it can protect it against inactivation. The extent of the inactivation by DFP and triisopropyl phosphate is reduced in the presence of dithiothreitol. It is suggested that the primary action of the organophosphorus compounds is to change the reactivity of membrane sulphydryl or disulphide groups. The relevance of these findings to the blocking of conduction in the axon are discussed.  相似文献   

12.
13.
Galanin receptors were solubilized from rat brain using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). Binding of 125I-galanin to the soluble fraction was time- and temperature-dependent, saturable, and reversible. Scatchard analysis of binding data indicated that the soluble extract contained a single class of galanin binding sites with a Kd of 0.8 nM and a Bmax of 26 fmol/mg of protein. Unlabeled galanin and its fragments galanin(2-29) and galanin(1-15) antagonized the binding of 125I-galanin to CHAPS-solubilized extracts with relative potencies similar to those observed with membrane receptors. Galanin(3-29) was found inactive. Binding of 125I-galanin to CHAPS extracts was inhibited by guanine nucleotides with the following rank order of potency: GMP-P-(NH)P greater than GTP greater than GDP. Molecular analysis of the soluble galanin receptor by covalent cross-linking of 125I-galanin to CHAPS extracts using disuccinimidyl tartrate and further identification on SDS-PAGE indicated that the soluble galanin binding site behaves as a protein of Mr 54,000. After incubation of CHAPS extracts with 125I-galanin, gel filtration on Sephacryl S-300 followed by ultracentrifugation on sucrose density gradient revealed a binding component with the following hydrodynamic parameters: Stokes radius, 5 nm; s20,w, 4.5 S; Mr, 98,000; frictional ratio, 1.6. GMP-P(NH)P treatment of CHAPS extracts gave rise to a molecular form with the following characteristics: Stokes radius, 4 nm; s20,w, 3.3 S; Mr, 57,000; frictional ratio, 1.4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
At low concentrations (25–100 μM) methylmercury chloride caused a steady increase in the threshold for excitation and on eventual block of action potentials without changing the resting membrane potential in squid giant axons. In the axons exposed to 25 μM methylmercury chloride, peak transient and steady-state conductances were decreased by 58.8 ± 5.1% and 35.9 ± 4.3% (mean ± SEM, 4 axons), respectively and leakage conductance increased to about five times of the control value. Higher concentrations of methylmercury chloride decreased the resting membrane potential. A concentration of 0.5 mM depolarizing the nerve membrane by 16 ± 2 mV (mean ± SEM, 3 axons) in 40 minutes. These changes in ionic conductances and membrane potential were irreversible on washing the axon with drug-free sea water.  相似文献   

15.
F Goubet  D Mohnen 《Plant physiology》1999,121(1):281-290
The transfer of a methyl group from S-adenosyl-L-methionine onto the carboxyl group of alpha-1,4-linked-galactosyluronic acid residues in the pectic polysaccharide homogalacturonan (HGA) is catalyzed by an enzyme commonly referred to as pectin methyltransferase. A pectin methyltransferase from microsomal membranes of tobacco (Nicotiana tabacum) was previously characterized (F. Goubet, L.N. Council, D. Mohnen [1998] Plant Physiol 116: 337-347) and named HGA methyltransferase (HGA-MT). We report the solubilization of HGA-MT from tobacco membranes. Approximately 22% of the HGA-MT activity in total membranes was solubilized by 0.65% (w/v) 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid containing 1 mM dithioerythritol. The addition of phosphatidylcholine and the methyl acceptors HGA or pectin (30% degree of esterification) to solubilized enzyme increased HGA-MT activity to 35% of total membrane-bound HGA-MT activity. Solubilized HGA-MT has a pH optimum of 7.8, an apparent K(m) for S-adenosyl-L-methionine of 18 microM, and an apparent V(max) of 0. 121 pkat mg(-1) of protein. The apparent K(m) for HGA and for pectin is 0.1 to 0.2 mg mL(-1). Methylated product was solubilized with boiling water and ammonium oxalate, two conditions used to solubilize pectin from the cell wall. The release of 75% to 90% of the radioactivity from the product pellet by mild base treatment showed that the methyl group was incorporated as a methyl ester rather than a methyl ether. The fragmentation of at least 55% to 70% of the radiolabeled product by endopolygalacturonase, and the loss of radioactivity from the product by treatment with pectin methylesterase, demonstrated that the bulk of the methylated product produced by the solubilized enzyme was pectin.  相似文献   

16.
17.
Deoxycholate can react with sodium channels with a high potency. The apparent dissociation constant for the saturable binding reaction is 2 microM at 8 degrees C, and the heat of reaction is approximately -7 kcal/mol. Four independent test with Na-free media, K-free media, tetrodotoxin, and pancuronium unequivocally indicate that it is the sodium channel that is affected by deoxycholate. Upon depolarization of the membrane, the drug modified channel exhibits a slowly activating and noninactivating sodium conductance. The kinetic pattern of the modified channel was studied by increasing deoxycholate concentration, lowering the temperature, chemical elimination of sodium inactivation, or conditioning depolarization. The slow activation of the modified channel can be represented by a single exponential function with the time constant of 1--5 ms. The modified channel is inactivated only partially with a time constant of 1 S. The reversal potential is unchanged by the drug. Observations in tail currents and the voltage dependence of activation suggest that the activation gate is actually unaffected. The apparently slow activation may reflect an interaction betweem deoxycholate and the sodium channel in resting state.  相似文献   

18.
The ionic mechanism of action of a spin-labeled local anesthetic (SLA), 2-[N-methyl-N-(2,2,6,6-tetramethylpiperidonooxyl)]-ethyl 4-ethoxylbenzoate, was studied by means of voltage clamp technique with squid giant axons in comparison with the parent compound without spin label moiety, 2-(N,N-dimethyl)ethyl 4-ethoxylbenzoate (GS-01). Like other local anesthetics, they suppressed both sodium and potassium conductance increases. However, three remarkable differences have been noted between SLA and GS-01: (1) SLA is more effective than GS-01 in suppressing the sodium and potassium conductance increases; (2) SLA induces a potassium inactivation, whereas GS-01 is lacking this ability; (3) SLA has no effect on the time to peak sodium current, whereas GS-01 prolongs it. GS-01 resembles procaine with respect to (2) and (3) above. SLA will become a useful probe for the study of the molecular mechanism of local anesthetic aciton and of ionic channel function.  相似文献   

19.
Fractions enriched in Golgi membranes were prepared from rat liver by sucrose gradient ultracentrifugation. These enriched membranes were further subfractionated on the basis of their solubilities in EGTA, 150 mM sodium carbonate, pH 11.5, sodium deoxycholate, Triton X-100, or sodium dodecyl sulfate. This led to isolation of peripheral, luminal, and integral membrane proteins of the Golgi-enriched membranes. Luminal and membrane proteins were further purified by wheat germ agglutinin and concanavalin A lectin affinity chromatographies. Some proteins from these lectin columns were resolved by preparative gel electrophoresis and microsequenced. Subsequently, antibodies were produced for two proteins by immunization of either mice or rabbits. Immunofluorescence microscopy suggests that these proteins are confined to Golgi apparatus-like structures. The protocol described is well suited for the study of organelle structure and function.  相似文献   

20.
H3-Uridine microinjected in the giant axons of the squid is incorporated in a TCA insoluble material. There is no difference between stimulated and resting axons as to the amount incorporated. The amount incorporated is increased if the stimulation precedes the microinjection of the tracer. RNA was purified and characterized from the axoplasm, axon sheaths and from a purified membrane preparation obtained from squid retinal nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号