共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosynthesis and utilization of extensively undermethylated poly(A)+ RNA in CHO cells during a cycloleucine treatment. 总被引:2,自引:0,他引:2 下载免费PDF全文
The role of RNA methylations in the control of mRNA maturation and incorporation into polysomes has been investigated through a study of the effects in vivo of cycloleucine, a specific inhibitor of S-adenosyl-methionine mediated methylation. During the cycloleucine treatment, the rate of biosynthesis of hnRNA and its subsequent polyadenylation were only slightly reduced as compared with untreated cells. However a significant lag-time in the cytoplasmic appearance of poly(A)+ undermethylated molecules was observed, in parallel with a transient shift in the average size of hnRNA towards higher molecular weight. Nevertheless, the total amount of pulse-labelled poly(A)+ mRNA transferred to cytoplasm after a long chase time (3 h.) was approximately the same for both cycloleucine-treated and control cells. Extensively undermethylated poly(A)+ cytoplasmic RNAs, possessing a 5' terminal cap were incorporated into polysomes in proportions very similar to control messenger molecules. These results suggest that a normal level of methylation is not stringently required for the production of the functional mRNA molecules although it appears to be of importance for the kinetics of the maturational process. 相似文献
2.
Novikoff cells in culture were labeled with L-[methyl-3H]methionine and [U-14C]uridine in the presence of (a) TubHcy2, (b) AdoHcy, (c) homocysteine, (d) tubercidin, or (e) without any additions. Only in cultures labeled in the presence of TubHcy were undermethylated cap structures observed to represent a significant portion of [3H]methyl radioactivity. Novikoff cells in culture were then simultaneously labeled with L-[methyl-3H]methionine and [32P]orthophosphate in the presence or absence of TubHcy. Total cytoplasmic, polysomal and monosomal poly(A)-containing RNAs were analyzed. Both monosomal and polysomal mRNA fractions from TubHcy-treated cells contain partially methylated cap structures, suggesting that 2'-O-methylation of the nucleoside adjacent to the pyrophosphate linkage in caps is not required for transport, ribosomal binding or translation. Comparison of nuclear and cytoplasmic cap structures from normal and inhibited cultures indicate that an altered mRNA population is generated in the presence of TubHcy. 相似文献
3.
4.
To study the role of 5-methylcytidine in the aminoacylation of mammalian tRNA, bulk tRNA specifically deficient in 5-methylcytidine was isolated from the livers of mice treated with 5-azacytidine (18 mg/kg) for 4 days. For comparison, more extensively altered tRNA was isolated from the livers of mice treated with DL-ethionine (100 mg/kg) plus adenine (48 mg/kg) for 3 days. The amino acid acceptor capacity of these tRNAs was determined by measuring the incorporation of one of eight different 14C-labeled amino acids or a mixture of 14C-labeled amino acids in homologous assays using a crude synthetase preparation isolated from untreated mice. The 5-methylcytidine-deficient tRNA incorporated each amino acid to the same extent as fully methylated tRNA. The tRNA from DL-ethionine-treated livers showed an overall decreased amino-acylation capacity for all amino acids tested. The 5-methylcytidine-deficient tRNA from DL-ethionine-treated mice were further characterized as substrates in homologous rate assays designed to determine the Km and V of the aminoacylation reaction using four individual 14C-labeled amino acids and a mixture of 14C-labeled amino acids. The Km and V of the reactions for all amino acids tested using 5-methylcytidine-deficient tRNA as substrate were essentially the same as for fully methylated tRNA. However, the Km and V were increased when liver tRNA from mice treated with DL-ethionine plus adenine was used as substrate in the rate reaction with [14C]lysine as label. Our results suggest that although extensively altered tRNA is a poorer substrate than control tRNA in both extent and rate of aminoacylation, 5-methylcytidine in mammalian tRNA is not involved in the recognition of the tRNA by the synthetase as measured by aminoacylation activity. 相似文献
5.
J P Moore A Johannsson T R Hesketh G A Smith J C Metcalfe 《The Biochemical journal》1984,221(3):675-684
Rat basophil leukaemic (2H3) cells, mast cells and mouse thymocytes respond to stimulation by specific ligands with an increase in the free cytosolic Ca2+ concentration. The time courses of these Ca signals and the biological responses have been compared with changes in phospholipid metabolism. Increased phosphoinositide metabolism coincides with the Ca signals and the responses in each cell system, whereas any increase in phospholipid methylation during the response is less than one molecule per receptor and at least 5-50-fold less than the increases reported previously. Furthermore, no significant changes were detected in the concentration of S-adenosylmethionine, the methyl-group donor in the synthesis of methylated phospholipids. The hypothesis that phospholipid methylation is obligatory for receptor-mediated Ca signals is not supported by these data and requires critical re-evaluation. 相似文献
6.
E. M. Smekalova O. S. Shubernetskaya M. I. Zvereva E. V. Gromenko M. P. Rubtsova O. A. Dontsova 《Biochemistry. Biokhimii?a》2012,77(10):1120-1128
Telomerase synthesizes repetitive G-rich sequences (telomeric repeats) at the ends of eukaryotic chromosomes. This mechanism maintains the integrity of the genome, as telomere shortening leads to degradation and fusion of chromosomes. The core components of telomerase are the telomerase catalytic subunit and telomerase RNA, which possesses a small template region serving for the synthesis of a telomeric repeat. Mutations in the telomerase RNA are associated with some cases of aplastic anemia and also cause dyskeratosis congenita, myelodysplasia, and pulmonary fibrosis. Telomerase is active in 85% of cancers, and telomerase activation is one of the first steps in cell transformation. The study of telomerase and pathways where this enzyme is involved will help to understand the mechanism of the mentioned diseases and to develop new approaches for their treatment. In this review we describe the modern conception of telomerase RNA biosynthesis, processing, and functioning in the three most studied systems — yeast, vertebrates, and ciliates. 相似文献
7.
Maturation of pre-rRNA has been investigated through heat shock experiments in which pre-rRNA synthesis is successively turned off and turned on. After one hour at 43°C high molecular weight RNA is no longer synthesized and both the methylation and the maturation of pre-rRNA synthesized before heat shock are blocked. After two hours recovery at 37°C, methylation and simultaneous maturation, of pre-existing RNA occur while pre-rRNA synthesis is reinitiated only after 7 hours at 37°C. During the first 30 min. at 43°C, a residual synthesis of high molecular weight RNA is observed in the nucleolus with an average molecular weight slightly higher than pre-rRNA (4.6 106). During the recovery period at 37°C, RNA synthesized at 43°C is slowly processed into unusual species (39S, 35S, 29S). No new ribosomal RNA appeared in the cytoplasm. This unusual maturation pathway could be a minor pathway of nucleolar RNA processing in exponentially growing cells. 相似文献
8.
Baker KN Rendall MH Hills AE Hoare M Freedman RB James DC 《Biotechnology and bioengineering》2001,73(3):188-202
Chinese hamster ovary and murine myeloma NS0 cells are currently favored host cell types for the production of therapeutic recombinant proteins. In this study, we compared N-glycan processing in GS-NS0 and GS-CHO cells producing the same model recombinant glycoprotein, tissue inhibitor of metalloproteinases 1. By manipulation of intracellular nucleotide-sugar content, we examined the feasibility of implementing metabolic control strategies aimed at reducing the occurrence of murine-specific glycan motifs on NS0-derived recombinant proteins, such as Galalpha1,3Galbeta1,4GlcNAc. Although both CHO and NS0-derived oligosaccharides were predominantly of the standard complex type with variable sialylation, 30% of N-glycan antennae associated with NS0-derived TIMP-1 terminated in alpha1,3-linked galactose residues. Furthermore, NS0 cells conferred a greater proportion of terminal N-glycolylneuraminic (sialic) acid residues as compared with the N-acetylneuraminic acid variant. Inclusion of the nucleotide-sugar precursors, glucosamine (10 mM, plus 2 mM uridine) and N-acetylmannosamine (20 mM), in culture media were shown to significantly increase the intracellular pools of UDP-N-acetylhexosamine and CMP-sialic acid, respectively, in both NS0 and CHO cells. The elevated UDP-N-acetylhexosamine content induced by the glucosamine/uridine treatment was associated with an increase in the antennarity of N-glycans associated with TIMP-1 produced in CHO cells but not N-glycans associated with TIMP-1 from NS0 cells. In addition, elevated UDP-N-acetylhexosamine content was associated with a slight decrease in sialylation in both cell lines. The elevated CMP-sialic acid content induced by N-acetylmannosamine had no effect on the overall level of sialylation of TIMP-1 produced by both CHO and NS0 cells, although the ratio of N-glycolylneuraminic acid:N-acetylneuraminic acid associated with NS0-derived TIMP-1 changed from 1:1 to 1:2. These data suggest that manipulation of nucleotide-sugar metabolism can promote changes in N-glycan processing that are either conserved between NS0 and CHO cells or specific to either NS0 cells or CHO cells. 相似文献
9.
Many carcinogenic agents are able to affect the methylation level in mammalian cells cultivated in vitro. The capacity of azacytidine (AZA) to demethylate DNA can be used to examine the relationship between the genomic methylation level and cytogenetic end-points. Here we compared the sister-chromatid exchange (SCE) level with the genomic % methylcytosine in a Chinese hamster ovary cell line in vitro after giving a single 10-microM pulse of AZA. Both parameters were followed up to 16 cell cycles after the agent was removed. While the SCE level increased starting 2 cycles from the treatment and persisted for the entire 16 cycles, the methylcytosine level, after an initial 50% decrease, approached the control value, completely returning to it after 10 cell cycles. The possibility that the persistence in the SCE increase is an inherited phenomenon is discussed. 相似文献
10.
J Brosius 《Trends in biochemical sciences》2001,26(11):653-656
High resolution crystal structures of the ribosome provide fascinating insights into perhaps the most sophisticated machine of a cell. Yet, this translational apparatus must have developed from a much more primitive structure. Throughout the evolution of this apparatus, tRNAs have been, and still are, key players in the translation process. 相似文献
11.
E Bedows J T Wachsman R I Gumport 《Biochemical and biophysical research communications》1975,67(3):1100-1107
Reports of the existence of eukaryotic RNA ligases may be incorrect. Evidence for this activity has been based upon the conversion of [5′-32p]-terminated oligoribonucleotides to an alkaline phosphatase resistant form and upon the detection of radioactive ribonucleoside monophosphates after alkaline hydrolysis of the reaction products. Although we have in part confirmed these observations, we find the labeled ribonucleoside monophosphate to be the 5′-isomer, and not the expected 2′ (3′)-isomer. In addition, roughly equivalent amounts of ribonucleoside monophosphate were observed whether or not alkaline hydrolysis was performed. We conclude that the existence of RNA ligase activity in eukaryotic cells is suspect. 相似文献
12.
Wheat germ tRNAs containing uridine in place of ribothymidine: a characterization of an unusual class of eukaryotic tRNAs. 下载免费PDF全文
An unusual class of wheat germ tRNAs has been isolated which completely lacks ribothymidine (rT) and contains an unmodified uridine in its place. We discuss here the isolation, identification and properties of these tRNAs. The rT-lacking tRNAs of wheat germ are essentially limited to the glycine isoacceptors (a minimum of five identifiable species), three threonine and at least, one tyrosine tRNA. All tRNAs were obtained 70-100% pure by chromatographic methods, and were detected by their ability to be methylated by E. coli rT-forming uracil methyltransferase with methyl-labeled S-adenosyl-L-methionine (SAM) as the methyl donor. In vitro methylation of each of the tRNAs resulted in the formation of 1 mole of rT per mole of tRNA. In the one case analyzed in detail (tRNA1Gly), all of the rT was found to be located at the 23rd position from the 3' end of the tRNA molecule. Following complete digestion of four highly purified glycine isoacceptors (tRNAGly1,4,5,6) to nucleosides and subsequent periodate oxidation and 3H potassium borohydride reduction, all were found to contain an unusually high level of 5-methylcytidine (m5C) (3-4 residues per molecule), and all contained no rT. The possible correlation between the presence of m5C and the absence of rT is discussed. All of the chromatographically purified glycine tRNAs function in a wheat germ cell-free protein synthesizing system and polymerize glycine in response to either poly G or poly (G, U). 相似文献
13.
14.
The intracellular ratio between methionine and its activated form S-adenosylmethionine (AdoMet) is of crucial importance for the one-carbon metabolism. AdoMet recycling into methionine was believed to be largely achieved through the methyl and the thiomethyladenosine cycles. We show here that in yeast, AdoMet recycling actually occurs mainly through the direct AdoMet-dependent remethylation of homocysteine. Compelling evidences supporting this result were obtained owing to the identification and functional characterization of two new genes, SAM4 and MHT1, that encode the yeast AdoMet-homocysteine methyltransferase and S-methylmethionine-homocysteine methyltransferase, respectively. Homologs of the Sam4 and Mht1 proteins exist in other eucaryotes, indicating that such enzymes would be universal and not restricted to the bacterial or fungal kingdoms. New pathways for AdoMet or S-methylmethionine-dependent methionine synthesis are presented. 相似文献
15.
16.
Cotranslational processing and protein turnover in eukaryotic cells 总被引:20,自引:0,他引:20
17.
Background
Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor.Results
We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution.Conclusion
We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.18.
Regulation of messenger RNA stability in eukaryotic cells 总被引:23,自引:0,他引:23
D J Shapiro J E Blume D A Nielsen 《BioEssays : news and reviews in molecular, cellular and developmental biology》1987,6(5):221-226
Regulation of the cytoplasmic stability of mRNAs has recetly been identified as a major control mechanism which governs mRNA levels in a variety of eukaryotic systems. In this review we discuss what is known about several experimental systems that exhibit regulated mRNA stability, describe the mechanisms that cells may use to achieve control of mRNA degradation, and suggest areas of future investigation likely to provide new insights into this process. 相似文献
19.
Chlamydia-dependent biosynthesis of a heparan sulphate-like compound in eukaryotic cells 总被引:2,自引:0,他引:2
One hypothesis for the mechanism of chlamydial interaction with its eukaryotic host cell invokes a trimolecular mechanism, whereby a Chlamydia -derived glycosaminoglycan bridges a chlamydial acceptor molecule and a host receptor enabling attachment and invasion. We show that a heparan sulphate-specific monoclonal antibody specifically binds a glycosaminoglycan localized to the surface of the chlamydial organism and effectively neutralizes infectivity of both C. trachomatis and C. pneumoniae . In addition to the ability of this antibody to neutralize infectivity, direct visualization using immunofluorescence demonstrated staining of chlamydial organisms localized to the intracellular vacuole. The chlamydial-associated glycosaminoglycan was specifically labelled with [14 C]-glucosamine, and the labelled compound was immunoprecipitated and resolved by gel electrophoresis. The chlamydial-associated glycosaminoglycan is a high-molecular-weight compound similar in size to heparin or heparan sulphate and was sensitive to cleavage by heparan sulphate lyase. These data demonstrate that a glucosamine-containing sulphated polysaccharide is produced within the intracellular vacuole containing chlamydiae and is a target for antibody-mediated neutralization of infectivity. 相似文献
20.
David Apirion Andras Miczak 《BioEssays : news and reviews in molecular, cellular and developmental biology》1993,15(2):113-120
RNA processing in Escherichia coli and some of its phages is reviewed here, with primary emphasis on rRNA and tRNA processing. Three enzymes, RNase III, RNase E and RNase P are responsible for most of the primary endonucleolytic RNA processing events. The first two are proteins, while RNase P is a ribozyme. These three enzymes have unique functions and in their absence, the cleavage events they catalyze are not performed. On the other hand a relatively large number of exonucleases participate in the trimming of the 3′ ends of tRNA precursor molecules and they can substitute for each other. Primary processing is the first event that happens to the nascent RNA molecule, while in secondary RNA processing, the substrate is a product of a primary processing event. Although most RNA processing occurs in RNP particles, it seems that only in secondary RNA processing is the RNP particle required for the reaction. Bacteria and especially bacteriophages contain self-splicing introns which in cases were probably acquired from other species. 相似文献