首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.  相似文献   

2.
Preventing demyelination and promoting remyelination of denuded axons are promising therapeutic strategies for spinal cord injury (SCI). Epidermal growth factor receptor (EGFR) inhibition was reported to benefit the neural functional recovery and the axon regeneration after SCI. However, its role in de- and remyelination of axons in injured spinal cord is unclear. In the present study, we evaluated the effects of EGFR inhibitor, PD168393 (PD), on the myelination in mouse contusive SCI model. We found that expression of myelin basic protein (MBP) in the injured spinal cords of PD treated mice was remarkably elevated. The density of glial precursor cells and oligodendrocytes (OLs) was increased and the cell apoptosis in lesions was attenuated after PD168393 treatment. Moreover, PD168393 treatment reduced both the numbers of OX42 + microglial cells and glial fibrillary acidic protein + astrocytes in damaged area of spinal cords. We thus conclude that the therapeutic effects of EGFR inhibition after SCI involves facilitating remyelination of the injured spinal cord, increasing of oligodendrocyte precursor cells and OLs, as well as suppressing the activation of astrocytes and microglia/macrophages.  相似文献   

3.
Chondroitin sulphate proteoglycans (CSPGs) with the major component NG2 have an inhibitory effect on regeneration of damaged axons after spinal cord injury. In this study, we investigate whether the digestion of CSPGs by chondroitinase ABC (ChABC) may decrease the NG2 expression and promote axon regrowth through the lesion site. Rats underwent spinal cord compression injury and were treated with ChABC or vehicle through an intrathecal catheter delivery at 2, 3, and 4 days after injury. In addition, animals were behaviorally scored using BBB test in weekly intervals after SCI. Based on immunocytochemical analyses, we have quantified distribution of NG2 glycoprotein and GAP-43 in spinal cord tissue in both experimental groups. Multiple injections of ChABC caused decrease of NG2 expression at lesion site at 5 and 7 days, but not at 14 and 28 days in comparison with vehicle-treated rats and significantly enhanced GAP-43 expression during the entire survival. The densitometry analysis showed significantly higher GAP-43 immunoreactivity (1.8–2.2-fold) in the regrowing axons and cell bodies within the central lesion cavity when compared with vehicle group. Longitudinally oriented and disorganized GAP-43-labeled axons were able to infiltrate and penetrate damaged tissue. The outgrowth of GAP-43 axons after CHABC delivery was significantly longer (≤0.457 mm) when compared with the length of axons in vehicle-treated rats (≤0.046 mm). Present findings suggest that degradation of NG2 with acute IT ChABC treatment may promote ongoing (long-lasting) axonal regenerative processes at late survival (14 and 28 days), but with no significant impact on the improvement of motor function.  相似文献   

4.
Spinal cord injury (SCI) is a traumatic disorder resulting in a functional deficit that usually leads to severe and permanent paralysis. After the initial insult to the spinal cord, additional structure and function are lost through an active and complex secondary process. Since there is not effective treatment for SCI, several strategies including cellular, pharmacological and rehabilitation therapies have been approached in animal models. Some of them have been proved in clinical trials. In this review we focus on the current state of cell therapies, particularly on cells from adult origin, assayed in preclinical research. Cell types used in SCI therapy include Schwann cells, olfactory ensheathing cells and adult stem cells, such as neural stem cells, umbilical cord blood derived cells, mesenchymal stem cells or induced pluripotent stem cells. There are not yet conclusive evidences on which types of glial or adult stem cells are most effective in SCI treatment. Their ability to incorporate into the damaged spinal cord, to differentiate into neural lineages, to exert neuroprotective effects, to promote regeneration of damaged axons, and to improve functional deficits are still discussed, before translation towards clinical use, as a single therapy or in combination with other strategies.  相似文献   

5.
Microvascular dysfunction, loss of vascular support, ischaemia and sub-acute vascular instability in surviving blood vessels contribute to secondary injury following SCI (spinal cord injury). Neither the precise temporal profile of the cellular dynamics of spinal microvasculature nor the potential molecular effectors regulating this plasticity are well understood. TGFβ (transforming growth factor β) isoforms have been shown to be rapidly increased in response to SCI and CNS (central nervous system) ischaemia, but no data exist regarding their contribution to microvascular dysfunction following SCI. To examine these issues, in the present study we used a model of focal spinal cord ischaemia/reperfusion SCI to examine the cellular response(s) of affected microvessels from 30 min to 14 days post-ischaemia. Spinal endothelial cells were isolated from affected tissue and subjected to focused microarray analysis of TGFβ-responsive/related mRNAs 6 and 24 h post-SCI. Immunohistochemical analyses of histopathology show neuronal disruption/loss and astroglial regression from spinal microvessels by 3 h post-ischaemia, with complete dissolution of functional endfeet (loss of aquaporin-4) by 12 h post-ischaemia. Coincident with this microvascular plasticity, results from microarray analyses show 9 out of 22 TGFβ-responsive mRNAs significantly up-regulated by 6 h post-ischaemia. Of these, serpine 1/PAI-1 (plasminogen-activator inhibitor 1) demonstrated the greatest increase (>40-fold). Furthermore, uPA (urokinase-type plasminogen activator), another member of the PAS (plasminogen activator system), was also significantly increased (>7.5-fold). These results, along with other select up-regulated mRNAs, were confirmed biochemically or immunohistochemically. Taken together, these results implicate TGFβ as a potential molecular effector of the anatomical and functional plasticity of microvessels following SCI.  相似文献   

6.
Methylprednisolone (MP) has been widely used as a standard therapeutic agent for the treatment of spinal cord injury (SCI). Because of its controversial beneficial effects, the combination of MP and other pharmacological agents aimed at enhancing functional recovery is desirable. The phosphodiesterase 4 (PDE4) inhibitor rolipram has been implicated in promotion of regeneration due to elevating cAMP. In the present study, we sought to determine the effects of MP and rolipram, administered in combination, after spinal cord injury (SCI) in adult rats. Here we show that in vitro administration of rolipram and MP significantly increased neuron survival and promoted neurite outgrowth of neurons on the inhibitory substrate CSPGs by upregulation of MMP-2 expression; in vivo administration of rolipram and MP inhibited CSPG expression and increase CSPG digestion after rat SCI. Rolipram and MP combining treatment promoted significant neuroprotection through reduced motoneuron death, minimized lesion cavity, and increased regeneration of lesioned corticospinal tract (CST) axons beyond the lesion site after SCI. Enhanced functional recovery was also observed. Overall, our study strongly suggested that the combination treatment of MP and rolipram may represent a promising strategy for clinically applicable pharmacological therapy for rapid initiation of neuroprotection after SCI.  相似文献   

7.
Unlike mammals, fish motor function can recover within 6–8 weeks after spinal cord injury (SCI). The motor function of zebrafish is regulated by dual control; the upper motor neurons of the brainstem and motor neurons of the spinal cord. In this study, we aimed to investigate the framework behind the regeneration of upper motor neurons in adult zebrafish after SCI. In particular, we investigated the cell survival of axotomized upper motor neurons and its molecular machinery in zebrafish brain. As representative nuclei of upper motor neurons, we retrogradely labeled neurons in the nucleus of medial longitudinal fasciculus (NMLF) and the intermediate reticular formation (IMRF) using a tracer injected into the lesion site of the spinal cord. Four to eight neurons in each thin sections of the area of NMLF and IMRF were successfully traced at least 1–15 days after SCI. TUNEL staining and BrdU labeling assay revealed that there was no apoptosis or cell proliferation in the axotomized neurons of the brainstem at various time points after SCI. In contrast, axotomized neurons labeled with a neurotracer showed increased expression of anti-apoptotic factors, such as Bcl-2 and phospho-Akt (p-Akt), at 1–6 days after SCI. Such a rapid increase of Bcl-2 and p-Akt protein levels after SCI was quantitatively confirmed by western blot analysis. These data strongly indicate that upper motor neurons in the NMLF and IMRF can survive and regrow their axons into the spinal cord through the rapid activation of anti-apoptotic molecules after SCI. The regrowing axons from upper motor neurons reached the lesion site at 10–15 days and then crossed at 4–6 weeks after SCI. These long-distance descending axons from originally axotomized neurons have a major role in restoration of motor function after SCI.  相似文献   

8.
The application of growth factors (GFs) for treating chronic spinal cord injury (SCI) has been shown to promote axonal regeneration and functional recovery. However, direct administration of GFs is limited by their rapid degradation and dilution at the injured sites. Moreover, SCI recovery is a multifactorial process that requires multiple GFs to participate in tissue regeneration. Based on these facts, controlled delivery of multiple growth factors (GFs) to lesion areas is becoming an attractive strategy for repairing SCI. Presently, we developed a GFs‐based delivery system (called GFs‐HP) that consisted of basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and heparin‐poloxamer (HP) hydrogel through self‐assembly mode. This GFs‐HP was a kind of thermosensitive hydrogel that was suitable for orthotopic administration in vivo. Meanwhile, a 3D porous structure of this hydrogel is commonly used to load large amounts of GFs. After single injection of GFs‐HP into the lesioned spinal cord, the sustained release of NGF and bFGF from HP could significantly improve neuronal survival, axon regeneration, reactive astrogliosis suppression and locomotor recovery, when compared with the treatment of free GFs or HP. Moreover, we also revealed that these neuroprotective and neuroregenerative effects of GFs‐HP were likely through activating the phosphatidylinositol 3 kinase and protein kinase B (PI3K/Akt) and mitogen‐activated protein kinase/extracellular signal‐regulated kinase (MAPK/ERK) signalling pathways. Overall, our work will provide an effective therapeutic strategy for SCI repair.  相似文献   

9.
Embryonic neural stem cell (ENSC) transplantation is used experimentally for the improvement of spinal cord repair following spinal cord injury (SCI). However, the effects of such intervention on oxidative stress and cell death remain unknown. We used in vivo Comet assay in the acute and chronic SCI groups compared with the SCI+ENSC transplantation groups of experimental rats in order to evaluate DNA damage in the spinal cord. Chronic SCI resulted in the generation of oxidative DNA damage in the spinal cord brain and kidneys, as indicated by high Comet assay parameters, including the percentage of DNA in the tail (T%, or TD), tail moment (TM), and tail length (TL). The DNA damage levels significantly decreased after ENSC transplantation in the spinal cords of acute and chronic SCI groups within the lesion site and rostrally and caudally to the injury, and in the brains and kidneys of the chronic SCI group. Thus, ENSC transplantation is found to be an effective tool for limitation of DNA damage following spinal cord injury.  相似文献   

10.
11.
Accordingly to its known function in corticospinal tract (CST) developmental growth, previous reports have shown an inhibitory role of Wnt5a in CST regeneration after spinal cord injury (SCI). Interestingly, it has been subsequently demonstrated that Wnt5a also modulates the developmental growth of non-CST axons and that different Wnt5a receptors are expressed in neurons, oligodendrocytes, NG2+ glial precursors and reactive microglia/macrophages and astrocytes after SCI. However, the role of Wnt5a in the response of these cell types, in the regeneration of non-CST axons and in functional recovery after SCI is currently unknown. To evaluate this, rats were subjected to spinal cord contusion and injected with a lentiviral vector generated to overexpress Wnt5a. Histological analyses were performed in spinal cord sections processed for the visualization of myelin, oligodendrocytes, neurons, microglia/macrophages, astrocytes, NG2+ glial precursors and serotonergic axons. Motor and bladder function recovery were also assessed. Further advancing our knowledge on the role of Wnt5a in SCI, we found that, besides its previously reported functions, Wnt5a overexpression elicits a reduction on neuronal cell density, the accumulation of NG2+ glial precursors and the descending serotonergic innervation in the affected areas, along with impairment of motor and bladder function recovery after SCI.  相似文献   

12.
Sympathetic preganglionic neurons and interneurons are closely apposed (presumably synapsed upon) by corticospinal tract (CST) axons. Sprouting of the thoracic CST rostral to lumbar spinal cord injuries (SCI) substantially increases the incidence of these appositions. To test our hypothesis that these additional synapses would increase CST control of sympathetic activity after SCI, we measured the effects of electrical stimulation of the CST on renal sympathetic nerve activity (RSNA) and arterial pressure (AP) in alpha-chloralose-anesthetized rats with either chronically intact or chronically lesioned spinal cords. Stimuli were delivered to the CST at intensities between 25-150 muA and frequencies between 25 and 75 Hz. Stimulation of the CST at the midcervical level decreased RSNA and AP. These decreases were not mediated by direct projections of the CST to the thoracic spinal cord because we could still elicit them by midcervical stimulation after acute lesions of the CST at caudal cervical levels. In contrast, caudal thoracic CST stimulation increased RSNA and AP. Neither the responses to cervical nor thoracic stimulation were affected by chronic lumbar SCI. These data show that the CST mediates decreases in RSNA via a cervical spinal system but excites spinal sympathetic neurons at caudal thoracic levels. Because chronic lumber spinal cord injury affected responses evoked from neither the cervical nor thoracic CST, we conclude that lesion-induced or regeneration-induced formation of new synapses between the CST and sympathetic neurons may not affect cardiovascular regulation.  相似文献   

13.
14.
15.
Chondroitin sulfate proteoglycans (CSPGs) are glial scar-associated molecules considered axonal regeneration inhibitors and can be digested by chondroitinase ABC (ChABC) to promote axonal regeneration after spinal cord injury (SCI). We previously demonstrated that intrathecal delivery of low-dose ChABC (1 U) in the acute stage of SCI promoted axonal regrowth and functional recovery. In this study, high-dose ChABC (50 U) introduced via intrathecal delivery induced subarachnoid hemorrhage and death within 48 h. However, most SCI patients are treated in the sub-acute or chronic stages, when the dense glial scar has formed and is minimally digested by intrathecal delivery of ChABC at the injury site. The present study investigated whether intraparenchymal delivery of ChABC in the sub-acute stage of complete spinal cord transection would promote axonal outgrowth and improve functional recovery. We observed no functional recovery following the low-dose ChABC (1 U or 5 U) treatments. Furthermore, animals treated with high-dose ChABC (50 U or 100 U) showed decreased CSPGs levels. The extent and area of the lesion were also dramatically decreased after ChABC treatment. The outgrowth of the regenerating axons was significantly increased, and some partially crossed the lesion site in the ChABC-treated groups. In addition, retrograde Fluoro-Gold (FG) labeling showed that the outgrowing axons could cross the lesion site and reach several brain stem nuclei involved in sensory and motor functions. The Basso, Beattie and Bresnahan (BBB) open field locomotor scores revealed that the ChABC treatment significantly improved functional recovery compared to the control group at eight weeks after treatment. Our study demonstrates that high-dose ChABC treatment in the sub-acute stage of SCI effectively improves glial scar digestion by reducing the lesion size and increasing axonal regrowth to the related functional nuclei, which promotes locomotor recovery. Thus, our results will aid in the treatment of spinal cord injury.  相似文献   

16.
《Cytotherapy》2020,22(6):301-312
Background aimsThe pro-regeneration capabilities of olfactory ensheathing cells (OECs) remain controversial. However, little is known regarding whether the transplantation of activated OECs by curcumin (CCM) elicits neural regeneration and functional recovery after spinal cord injury (SCI) in rats, and the possible molecular mechanisms have never been investigated.MethodsPrimary OECs were treated with 1μM CCM for 1–3 days. Concomitantly, activated OECs were transplanted into the traumatic spinal cord of Sprague Dawley rats. One to 9 weeks after surgery, the assessment of behavior recovery was made using the Basso, Beattie and Bresnahan (BBB) locomotor scale; electrophysiology tests, such as somatosensory evoked potential (SEP) and motor evoked potential (MEP); and the cylinder test. Pathological study, including hematoxylin and eosin staining and immunofluorescence staining for neurofilaments (NFs), was conducted at 5 weeks post-surgery. In addition, activation profiles of OECs by CCM stimulus were assessed and levels of transglutaminase-2 (TG2) and phosphatidylserine receptor (PSR) in OECs stimulated by CCM were further determined.ResultsCCM remarkably enhanced OEC proliferation, improved cell viability and strengthened secretion of neurotrophins and anti-inflammatory factors. In addition, the levels of TG2 and PSR in CCM-treated OECs were significantly elevated. More importantly, beyond 1 week post-transplantation of CCM-treated OECs into lesioned spinal cord, BBB score and cylinder test score were significantly higher than that seen in the other three groups and a more postponed latent SEP and MEP period was noted. Furthermore, 5 weeks later, numerous, well-arranged NF-positive nerve fibers, lesions with less cavities and reduced levels of pro-inflammatory cytokines were found in activated OEC implantation groups. In addition, the number of NF-positive fibers was significantly improved and the number and area of both cavities and gliotic scars were remarkably decreased compared with the corresponding controls.ConclusionsTransplantation of OECs activated by CCM promotes neural regeneration and functional recovery following SCI, the underlying mechanisms of which are intimately associated with the elevated production of neurotrophic factors and anti-inflammatory factors in OECs stimulated by CCM as well as reduced pro-inflammatory cytokines from the post-contusion spinal cord. In addition, OECs activated by CCM were mediated through TG2 and PSR.  相似文献   

17.
Controversies exist concerning the need for mesenchymal stromal cells (MSCs) to be transdifferentiated prior to their transplantation. In the present study, we compared the results of grafting into the rat contused spinal cord undifferentiated, adipose tissue-derived stromal cells (uADSCs) versus ADSCs induced by two different protocols to form differentiated nervous tissue. Using Basso, Beattie, and Bresnahan scores and grid tests, we found that three cell-treated groups, including uADSCs-treated, dADSCs induced by Protocol 1 (dADSC-P1)-treated, and dADSCs induced by Protocol 2 (dADSC-P2)-treated groups, significantly improved locomotor functional recovery in SCI rats, compared with the saline-treated group. Furthermore, functional recovery was better in the uADSC-treated and dADSC-P2-treated groups than in the dADSC-P1-treated group at week 12 postinjury (P < 0.05 for dADSC-P1 group vs. uADSCs or dADSC-P2 groups). Although both protocols could induce high percentages of cells expressing neural markers in vitro, few BrdU-labeled cells survived at the injury sites in the three cell-treated groups, and only a small percentage of BrdU-positive cells expressed neural markers. On the other hand, the number of NF200-positive axons in the uADSC-treated and dADSC-P2-treated groups was significantly larger than those in the dADSC-P1-treated and saline-treated control groups. Our results indicate that ADSCs are able to differentiate into neural-like cells in vitro and in vivo. However, neural differentiated ADSCs did not result in better functional recovery than undifferentiated ones, following SCI. In vitro neural transdifferentiation of ADSCs might therefore not be a necessary pretransplantation step. Furthermore, cellular replacement or integration might not contribute to the functional recovery of the injured spinal cord.  相似文献   

18.
脊髓损伤(spinalcordinjury,SCI)是一种严重的损伤,它对患者的影响是相当持久的,SCI治疗的难点主要是由于损伤后脊髓中的微环境不利于神经细胞的再生、轴突的生长和新突触的形成,从而影响了脊髓组织的修复。现在SCI治疗的策略就是要改善损伤脊髓微环境,减少不利因素,从而促进脊髓结构修复和功能重建。本研究综述近年来逐渐发展起来的药物及靶向治疗方法,为SCI的新治疗提供参考依据,真正提高患者的生活质量。  相似文献   

19.
Spinal cord injury (SCI) initiates a cascade of events and these responses to injury are likely to be mediated and reflected by changes in mRNA concentrations. As a step towards understanding the complex mechanisms underlying repair and regeneration after SCI, the gene expression pattern was examined 4.5 days after complete transection at T8-9 level of rat spinal cord. Improved subtractive hybridization was used to establish a subtracted cDNA library using cDNAs from normal rat spinal cord as driver and cDNAs from injured spinal cord as tester. By expressed sequence tag (EST) sequencing, we obtained 73 EST fragments from this library, representing 40 differentially expressed genes. Among them, 32 were known genes and 8 were novel genes. Functions of all annotated genes were scattered in almost every important field of cell life such as DNA repair, detoxification, mRNA quality control, cell cycle control, and signaling, which reflected the complexity of SCI and regeneration. Then we verified subtraction results with semiquantitative RT-PCR for eight genes. These analyses confirmed, to a large extent, that the subtraction results accurately reflected the molecular changes occurring at 4.5 days post-SCI. The current study identified a number of genes that may shed new light on SCI-related inflammation, neuroprotection, neurite-outgrowth, synaptogenesis, and astrogliosis. In conclusion, the identification of molecular changes using improved subtractive hybridization may lead to a better understanding of molecular mechanisms responsible for repair and regeneration after SCI.  相似文献   

20.
Pyrroloquinoline quinone (PQQ) is a naturally occurring redox cofactor that acts as an essential nutrient, antioxidant, and redox modulator. PQQ has been demonstrated to oxidize the redox modulatory site of N-methyl-d-aspartic acid (NMDA) receptors. Such agents are known to be neuroprotective in experimental stroke models. Therefore, we examined the possible ameliorating effect of PQQ on spinal cord injury (SCI) in adult rats. Intraperitoneal administration of PQQ effectively promoted the functional recovery of SCI rats after hemi-transection, which was preceded by the attenuation of the expression of inducible nitric oxide (NO) synthase (iNOS) mRNA in the injury site. NO is involved in the secondary detrimental mechanisms and has been implicated in NMDA receptor-mediated neurotoxicity. In fact, administration of PQQ induced significantly decreased lesion size and increased axon density adjoining the lesion area. These observations suggest that PQQ protects against the secondary damage by reducing iNOS expression following primary physical injury to the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号