共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A new pleiotropic mutation causing defective carbohydrate uptake in Escherichia coli K-12: isolation, mapping, and preliminary characterization. 总被引:2,自引:0,他引:2
下载免费PDF全文

A new pleiotropic mutation, designated cup-1 (for carbohydrate uptake), which impairs the ability of Escherichia coli cells to grow on a large number of phosphotransferase system (PTS) and non-PTS carbohydrates by blocking their entry into the cells, has been isolated, partially characterized, and mapped. The mutants grew poorly even on rich and glucose minimal media. Fast-growing revertants rapidly accumulated in cultures grown on either of the above two media and made stable maintenance of the mutation difficult. Several extragenic suppressor mutations that permitted cup cells to grow on specific single sugars or groups of sugars have been isolated. One such suppressor, which enabled cup cells to grow as well on glycerol minimal medium as their wild-type parent, has been helpful in stably maintaining these cells in this medium. cup-1 has been mapped to 97 min on the standard E. coli map. It cotransduced with a transposon Tn10 inserted clockwise to it and (very weakly) with uxuA. Surprisingly, it failed to cotransduce with pyrB, argI, or valS, three markers located nearby but counterclockwise to it. In F' merodiploids, cup-1 was dominant over its cup+ allele. Cyclic AMP permitted growth of cup-1 cells on some sugars but not all. Apparently, reduced cyclic AMP level and therefore noninduction of several sugar operons is one but not the only effect of cup. 相似文献
3.
A mutant strain of Escherichia coli K12, R2721, has been shown to differ from its parent strain, S491, in four associated phenotypic characters as a result of a single mutation. This strain did not give recombinants with DNA transduced by bacteriophage PI or bacteriophage Mu, nor transformats after exposure to R factor DNA: lysates of bacteriophage PI grown on this strain did not appear to contain any transducing particles when tested on normal recipients. Moreover, the reversion rates, both spontaneous and ultraviolet-induced, for two auxotrophic markers were reduced. The frequency of revertants was at least two orders of magnitude lower in cultures of R2721 than in cultures of S491I. Many of the rare revertants for one or other of the auxotrophic markers were found to have regained normal reversion frequencies for the other marker and for the capacity to be transduced. In all other respects, recombination in R2721 appeared normal, the frequency of chromosomal mobilization by and F' factor was unaffected and normal yields of recombinants were obtained from matings with Hfr strains. The only circumstance in which transduction of R2721 was observed was when the capacity to ferment galactose was selected and PI had been grown on a strain carrying lambdadgal when, presumably, integration was effected by the phage-coded gene products. The mutation has been located on the E. coli chromosone map between tonA and pro and has been given the symbol tdi (transduction inhibition). Double mutants, (tdi recA) and (tdi recB), have been isolated and show no unexpected properties. 相似文献
4.
S Neale 《Mutation research》1972,14(2):155-164
N-Nitroso-N-methylurea (NMU) and N-nitroso-N-ethylurea (NEU) induced reversions in four mutant auxotropic strains of E. coli. Among other nitroso compounds tested only N-methyl-N′-nitro-N-nitrosoguanidine (MNG) was an active mutagen in the system used. 相似文献
5.
The genetic location of tmk, the gene for dTMP kinase, has been mapped at min 24.0 on the Escherichia coli map. 相似文献
6.
Studies of N-ethyl-N-nitrosourea (ENU)-induced mutagenesis with a tyrosine auxotroph of Escherichia coli revealed a new type of revertant. This mutant strain was interesting because: (i) it was not a true revertant of the nonsense (ochre) defect nor a tRNA suppressor mutation; and (ii) it was induced by ENU to greater extent in a UmuC-defective host. Genetic mapping located the probable mutation to a region of the E. coli chromosome containing a newly described gene called tas. To investigate this mutation, the upstream region of the tas gene from both wild-type and mutant cells was cloned into a promoterless lacZ expression vector and recombined onto a lambda bacteriophage. Recombinant bacteriophage were inserted into the bacterial chromosome and beta-galactosidase (betaGal) assays were performed. These assays revealed an almost three-fold greater expression of betaGal from the mutant DNA than from the wild-type DNA. Sequence analysis of the region directly upstream of the tas gene revealed a G:C to A:T transition at base number 2263 (numbering based on GenBank Accession #AE000367), located within a potential promoter site. Further sequencing indicated no other mutations within the 1454bp region analyzed; however, there were several nucleotide differences seen in our B/r strain of E. coli, when compared with the published E. coli K-12 sequence. A total of 10 base differences were discovered; one in mutH, six within a potential open reading frame (ORF-o237) and three in non-coding regions. Yet, none of the changes altered the predicted amino acid sequences. These results provide evidence of a mechanism for increased expression of the novel gene tas and support the neutral drift hypothesis for the evolution of DNA sequences. 相似文献
7.
The study of glutathione status in aerobically grown Escherichia coli cultures showed that the total intracellular glutathione (GSHin + GSSGin) level falls by 63% in response to a rapid downshift in the extracellular pH from 6.5 to 5.5. The incubation of E. coli cells in the presence of 50 mM acetate or 10 micrograms/ml gramicidin S decreased the total intracellular glutathione level by 50 and 25%, respectively. The fall in the total intracellular glutathione level was accompanied by a significant decrease in the (GSHin:GSSGin) ratio. The most profound effect on the extracellular glutathione level was exerted by gramicidin S, which augmented the total glutathione level by 1.8 times and the (GSHout:GSSGout) ratio by 2.1 times. The gramicidin S treatment and acetate stress inhibited the growth of mutant E. coli cells defective in glutathione synthesis 5 and 2 times more severely than the growth of the parent cells. The pH downshift and the exposure of E. coli cells to gramicidin S and 50 mM acetate enhanced the expression of the sodA gene coding for superoxide dismutase SodA. 相似文献
8.
Genetic mapping of katF, a locus that with katE affects the synthesis of a second catalase species in Escherichia coli 总被引:19,自引:25,他引:19
下载免费PDF全文

A class of catalase-deficient mutants that was unlinked to katE was localized between mutS and cys at 59.0 min on the Escherichia coli genome. This locus was named katF. Transposon Tn10 insertions were isolated that mapped in both katE and katF loci. The catalase species present in katE+ and katF+ recombinants was found to be different from the main catalase activities, HPI and HPII, in several respects. It did not have an associated peroxidase activity; it was electrophoretically slower on native polyacrylamide gels; it eluted from DEAE-Sephadex A50 at a higher salt concentration; its Km for H2O2 was 30.9 mM as compared with 3.7 mM for HPI and HPII; its synthesis was not induced by ascorbate; and it did not cross react with HPI-HPII antisera. This new catalase was labeled HPIII. 相似文献
9.
10.
Genetic mapping of katG, a locus that affects synthesis of the bifunctional catalase-peroxidase hydroperoxidase I in Escherichia coli. 总被引:17,自引:21,他引:17
下载免费PDF全文

A locus unlinked to either katE or katF that affected catalase levels in Escherichia coli was identified and localized between metB and ppc at 89.2 min on the genome. The locus was named katG. Mutations in katG which prevented the formation of both isoenzyme forms of the bifunctional catalase-peroxidase HPI were created both by nitrosoguanidine and by transposon Tn10 insertions. All katG+ recombinants and transductants contained both HPI isoenzymes. Despite the common feature of little or no catalase activity in four of the catalase-deficient strains, subtle differences in the phenotypes of each strain resulted from the different katG mutations. All three mutants caused by nitrosoguanidine produced a protein with little or no catalase activity but with the same subunit molecular weight and with similar antigenic properties to HPI, implying the presence of missense mutations rather than nonsense mutations in each strain. Indeed one mutant produced an HPI-like protein that retained peroxidase activity, whereas the HPI-like protein in a second mutant exhibited no catalase or peroxidase activity. The third mutant responded to ascorbate induction with the synthesis of near normal catalase levels, suggesting a regulatory defect. The Tn10 insertion mutant produced no catalase and no protein that was antigenically similar to HPI. 相似文献
11.
Energy transduction in Escherichia coli: physiological and biochemical effects of mutation in the uncB locus.
下载免费PDF全文

The transduction of energy through biological membranes was investigated in Escherichia coli strains defective in the ATP synthetase complex. Everted vesicles prepared from strains containing an uncA or uncB mutation were compared with those of the parental strain for their ability to couple energy derived from the oxidation of substrates by the electron transport chain or from the hydrolysis of ATP by the Mg2+-adenosine triphosphatase, as measured by the energy-dependent quenching of quinacrine fluorescence or the active transport of 45Ca2+. Removal of the Mg2+-adenosine triphosphatase from membranes derived from the parental or an uncA strain caused a loss of energy-linked functions and a concomitant increase in the permeability of the membrane for protons. Proton impermeability was restored by treatment with N,N'-dicyclohexylcarbodiimide. When membranes of the uncB strain were treated in a similar manner, there was no loss of respiratory-driven functions, nor was there a change in proton permeability. These observations suggest that the uncB mutation specifically results in alteration of an intrinsic membrane protein channel necessary for the generation of utilzation of the electrochemical gradient of protons by that complex. Loss of the function of the proton channel is believed to prevent the transduction of energy through the ATP synthetase complex. 相似文献
12.
13.
A mutation in a new gene of Escherichia coli, psu, requires secondary mutations for survival: psu mutants express a pleiotropic suppressor phenotype.
下载免费PDF全文

E Ephrati-Elizur 《Journal of bacteriology》1993,175(1):207-213
A mutation in an apparently new gene of Escherichia coli, psu, maps close to ara (1.3 min). psu mutants express a pleiotropic suppressor phenotype in which several auxotrophic requirements and some deletion mutations are suppressed. psu cloned in pBR322 can be maintained by the transformed cell only in the presence of several secondary mutations which accumulate in cultures of psu mutants and have an apparently compensatory role. The accumulation of secondary mutations is not due to mutator activity. The secondary mutations can each act as a suppressor of an auxotrophic requirement in the absence of psu, while suppression of deletions requires the presence of psu. Thus, the suppressor phenotype of psu mutants is due to both psu and the secondary mutations. The functions of psu and the secondary mutations are not known. However, two observations suggest an association with DNA gyrase and with DNA supercoiling. (i) psu mutants are highly resistant to oxolinic acid, the gyrase A inhibitor, while the secondary mutants vary from being very sensitive to more resistant than the wild-type strain. (ii) Novobiocin, which decreases the level of DNA supercoiling, significantly stimulates suppression of auxotrophy in some secondary mutants. 相似文献
14.
Di Luccio E Petschacher B Voegtli J Chou HT Stahlberg H Nidetzky B Wilson DK 《Journal of molecular biology》2007,365(3):783-798
The primary metabolic route for D-xylose, the second most abundant sugar in nature, is via the pentose phosphate pathway after a two-step or three-step conversion to xylulose-5-phosphate. Xylulose kinase (XK; EC 2.7.1.17) phosphorylates D-xylulose, the last step in this conversion. The apo and D-xylulose-bound crystal structures of Escherichia coli XK have been determined and show a dimer composed of two domains separated by an open cleft. XK dimerization was observed directly by a cryo-EM reconstruction at 36 A resolution. Kinetic studies reveal that XK has a weak substrate-independent MgATP-hydrolyzing activity, and phosphorylates several sugars and polyols with low catalytic efficiency. Binding of pentulose and MgATP to form the reactive ternary complex is strongly synergistic. Although the steady-state kinetic mechanism of XK is formally random, a path is preferred in which D-xylulose binds before MgATP. Modelling of MgATP binding to XK and the accompanying conformational change suggests that sugar binding is accompanied by a dramatic hinge-bending movement that enhances interactions with MgATP, explaining the observed synergism. A catalytic mechanism is proposed and supported by relevant site-directed mutants. 相似文献
15.
16.
17.
Summary The dasC mutation, an extragenic suppressor of dnaA46, was mapped by P1 transduction near the rep, trxA, rho region of the Escherichia coli chromosome. The dasC mutation could not be separated from trxA by P1 transduction indicating that dasC and trxA are allelic. Multicopy plasmids containing an intact trxA gene were able to reverse the suppressive effect of the dasC mutation on the dnaA46 mutation. Introduction of a frameshift mutation into the cloned trxA coding region abolished the ability of these recombinant plasmids to reverse the suppressive effect. These results indicate that dasC is allelic with trxA, the gene encoding thioredoxin. 相似文献
18.
19.
Purine biosynthesis in Escherichia coli K12: structure and DNA sequence studies of the purHD locus 总被引:5,自引:0,他引:5
K. A. Flannigan S. H. Hennigan H. H. Vogelbacker J. S. Gots J. M. Smith 《Molecular microbiology》1990,4(3):381-392
The de novo purine biosynthetic enzymes 5-amino-4-imidazolecarboxamide-ribonucleotide (AICAR) transformylase (EC 2.1.2.3), IMP cyclohydrolase (EC 3.5.4.10) and glycineamide-ribonucleotide (GAR) synthetase (EC 2.1.2.2) are encoded by the purHD locus of Escherichia coli. The DNA sequence of this locus revealed two open reading frames encoding polypeptides of Mr 57,335 and 45,945 (GAR synthetase), respectively, that formed an operon. The DNA sequence, maxicell and complementation analyses all supported the concept that the Mr 57,335 polypeptide is the product of the purH gene and encodes a bifunctional protein containing both AICAR transformylase and IMP cyclohydrolase activities. The 5' end of the purHD mRNA was determined by primer extension mapping and contains two regions of dyad symmetry capable of forming 'hairpin' loops where the formation of the one would prevent the formation of the other but not vice versa. Regulation by the purR gene product was explained by the discovery of a purR binding site in the purHD control region. 相似文献