首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normative trends in the gait patterns of modern man can be used to reconstruct crucial characteristics of the bipedal behaviour of Pliocene hominids from their fossilized footprints. In this reconstruction the interrelated parameters of velocity, stride-length, and cadence are determined from imprints made in damp volcanic ash some 3.7 million years ago. When early hominid footprint data is fitted to regression equations of high predictability for the interrelationship of these locomotor parameters in modern man, a pattern of gait emerges that contradicts previous reconstructions.  相似文献   

2.
Primate stride lengths during quadrupedal locomotion are very long when compared to those of nonprimate quadrupedal mammals at the speed of trot/gallop transition. These exceptional lengths are a consequence of the relatively long limbs of primates and the large angular excursions of their limbs during quadrupedalism. When quadrupedal primates employ bipedal gaits they exhibit much lower angular excursions. Consequently their bipedal stride lengths do not appear to be exceptional in length when compared to other mammals. Angular excursions of the lower limbs of modern humans are not exceptionally large. However, when running, humans exhibit relatively long periods of flight (i.e., they have low duty factors) when compared to other mammals including primates. Because of these long periods of flight and their relative long lower limbs, humans have running stride lengths that are at the lower end of the range of stride lengths of quadrupedal primates. The stride length of the Laetoli hominid trails are evaluated in this context.  相似文献   

3.
In 1984, Helene (Am. J. Physics 52:656) and Alexander (Am. Scientist 72:348–354) presented equations which purported to explain how lower limb length limited maximum walking speed in humans. The equations were based on a simplified model of human walking in which the center of mass (CoM) “vaults” over the supporting leg. Increasing walking speed by increasing stride frequency or stride length would increase the upward acceleration of the CoM in the first half of stance phase, to the point that it would be greater than the downward pull of gravity, and the individual would become airborne. This constitutes running by most definitions. While these models ignored various mechanical factors, such as knee flexion during midstance, that reduce the vertical movement of the CoM, the general idea is plausible inasmuch as the CoM of the body does oscillate vertically with each step. One hypothesis tested here is whether it is indeed the interaction between the pull of gravity and the individual's own upward acceleration that determines at what speed (or cadence) he changes from walking to running. Another hypothesis considered is that increased lower limb length (L) was selected for in early hominids, because of the locomotor advantages of longer lower limbs. Results indicate, however, that while L was clearly related to maximum possible walking speed, it was not an important factor in determining maximum “comfortable” walking speed. These and other results from the recent literature suggest that increased lower limb length provided no selective advantage in locomotion, and other explanations should be sought. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Associated fore- and hindlimb parts of five individuals are known from the hominid Plio-Pleistocene fossil collections in Africa. Four of these have been classified as Australopithecus and show definite evidence that in comparison with humans, forelimbs were relatively large and hindlimbs were relatively small. The fourth individual, placed in the genus Homo, has human proportions. These findings do not necessarily imply locomotor differences: the forelimbs may have been relatively long in Australopithecus simply because they were as yet not completely reduced from their generalized hominoid ancestral state.  相似文献   

5.
Shrewsbury  M. M.  Sonek  A. 《Human Evolution》1986,1(3):233-242
Human Evolution - Four Types of precision holding in the human hand have been identified and described in accordance with the contrasting regional properties of a differentiated ungual pulp of the...  相似文献   

6.
Fossil hominid remains dating to the Upper Pleistocene in Yugoslavia are reviewed. Particular emphasis is placed on the assessment of a hominid frontal from the site of Velika Pe?ina in northwestern Croatia. This specimen represents the earliest absolutely-dated hominid associated with the Upper Paleolithic in Europe. Also the hominid material from the site of Veternica is discussed, and data are presented on the new remains from ?andalja. It is concluded that no Neandertal remains, except for Krapina, have been found in Yugoslavia.  相似文献   

7.
The pathology’s impact on gait pattern may be overestimated by conventional gait indices (Gillette Gait Index – GGI, Gait Deviation Index – GDI, Gait Profile Score – GPS), since impairments’ consequences on kinematics may be amplified by a change in walking speed. The objectives of this study were to evaluate the influence of walking speed on the computation of gait indices and to propose a corrective method to cancel the effects of walking speed. Spatiotemporal parameters and kinematics of fifty-four asymptomatic participants (30 M/24 W, 37.9 ± 13.7 years, 72.8 ± 13.3 kg, 1.74 ± 0.10 m) were collected at four speed conditions (C1:[0,0.4] m s−1, C2:[0.4,0.8] m s−1, C3:[0.8,1.2] m s−1, C4:spontaneous). Four values of each index were computed for each trial using successively the four conditions as normative data repository. Mean values over all participants were statistically compared (paired t-tests, 95% confidence level). Indices values computed with normative at equivalent walking speed were not statistically different from reference values. Meanwhile, deviations appeared when the walking speed discrepancy between conditions and normative increased. These drifts related to walking speed mismatch have been quantified and fitting functions proposed. A correction was applied to indices. GGI was efficiently adjusted while GDI and GPS remain different from their reference values for C1 and C2. Gait indices must be interpreted cautiously in function of the normative data repository’s walking speed used for computation. Furthermore, a coupled use of conventional and corrected gait indices could lead to a better comprehension of the contribution of impairments and walking speed on gait deviations and overall gait quality.  相似文献   

8.
The relatively low degree of canine tooth dimorphism in Australopithecus afarensis has been used as “primary evidence” to support the concept of a mating system of monogamous pair-bonding and male provisioning. A recent field study of woolly spider monkeys shows that these large primates, which lack canine tooth (and body size) dimorphism, are characterized by apolygynous mating system. Male parental care of infants is absent in this species. These data support the view that a lack of canine tooth dimorphism in an anthropoid species does not necessarily imply either a monogamous, pair-bonded mating system or male parental care.  相似文献   

9.
The increased use of gait analysis has raised the need for a better understanding of how walking speed and demographic variations influence asymptomatic gait. Previous analyses mainly reported relationships between subsets of gait features and demographic measures, rendering it difficult to assess whether gait features are affected by walking speed or other demographic measures. The purpose of this study was to conduct a comprehensive analysis of the kinematic and kinetic profiles during ambulation that tests for the effect of walking speed in parallel to the effects of age, sex, and body mass index. This was accomplished by recruiting a population of 121 asymptomatic subjects and analyzing characteristic 3-dimensional kinematic and kinetic features at the ankle, knee, hip, and pelvis during walking trials at slow, normal, and fast speeds. Mixed effects linear regression models were used to identify how each of 78 discrete gait features is affected by variations in walking speed, age, sex, and body mass index. As expected, nearly every feature was associated with variations in walking speed. Several features were also affected by variations in demographic measures, including age affecting sagittal-plane knee kinematics, body mass index affecting sagittal-plane pelvis and hip kinematics, body mass index affecting frontal-plane knee kinematics and kinetics, and sex affecting frontal-plane kinematics at the pelvis, hip, and knee. These results could aid in the design of future studies, as well as clarify how walking speed, age, sex, and body mass index may act as potential confounders in studies with small populations or in populations with insufficient demographic variations for thorough statistical analyses.  相似文献   

10.
Morphological and genetic analyses have yet to resolve the question of whether more than one species of Homo existed contemporaneously in the Pleistocene. In an effort to contribute a process-related perspective to hominid phylogenetic reconstruction, this paper uses an analogy to the northern wolf-like canids (the wolves and coyotes) to ask the question, How many Homo species should there be, given their likely behavioral profile(s)? In contrast to earlier comparisons to social carnivores which sought to illuminate specific aspects of hominid behavioral ecology, this paper explores behavioral constraints on the process of speciation itself. The analogy suggests that because Pleistocene Homo probably exhibited high habitat tolerance, they would not have had the opportunity to speciate, especially in Africa. In contrast to an earlier single-species hypothesis based on competitive exclusion between sympatric hominid species, this paper explores constraints on the process of speciation under conditions of temporary allopatry.  相似文献   

11.
Local dynamic stability has been assessed by the short-term local divergence exponent (λS), which quantifies the average rate of logarithmic divergence of infinitesimally close trajectories in state space. Both increased and decreased local dynamic stability at faster walking speeds have been reported. This might pertain to methodological differences in calculating λS. Therefore, the aim was to test if different calculation methods would induce different effects of walking speed on local dynamic stability. Ten young healthy participants walked on a treadmill at five speeds (60%, 80%, 100%, 120% and 140% of preferred walking speed) for 3 min each, while upper body accelerations in three directions were sampled. From these time-series, λS was calculated by three different methods using: (a) a fixed time interval and expressed as logarithmic divergence per stride-time (λSa), (b) a fixed number of strides and expressed as logarithmic divergence per time (λSb) and (c) a fixed number of strides and expressed as logarithmic divergence per stride-time (λSc). Mean preferred walking speed was 1.16±0.09 m/s. There was only a minor effect of walking speed on λSa. λSb increased with increasing walking speed indicating decreased local dynamic stability at faster walking speeds, whereas λSc decreased with increasing walking speed indicating increased local dynamic stability at faster walking speeds. Thus, the effect of walking speed on calculated local dynamic stability was significantly different between methods used to calculate local dynamic stability. Therefore, inferences and comparisons of studies employing λS should be made with careful consideration of the calculation method.  相似文献   

12.
Individuals with Parkinson’s disease (PD) exhibit poorer walking performance compared to healthy, age-matched adults. Lower extremity joint kinetics may provide insight into this performance deficit but are currently lacking in the PD literature, especially across multiple speeds. The primary purpose of this study was to compare joint kinetics between individuals with PD and healthy older adults at both comfortable and maximal walking speeds. Secondarily, we quantified relationships between joint kinetics and walking speeds within each group. Biomechanical gait analyses were conducted for 13 individuals with PD and 12 age-matched controls during comfortable (CWS) and maximal (MWS) speed walking. Relative contributions to total positive work from the hip, knee, and ankle were compared across groups and speeds. Within each group, relationships between relative joint work and CWS and MWS were also quantified. Significant group by speed interactions indicated that healthy older adults increased hip and decreased ankle relative work at MWS compared to CWS whereas relative work at all joints in PD group remained stable across speeds. In the older group, positive relationships were observed between relative hip work and MWS. In the PD group, negative relationships were observed between relative hip work and CWS and MWS. Healthy older adults disproportionately increased mechanical contributions from the hip at MWS compared to CWS. Individuals with PD did not exhibit similar disproportionate scaling of joint kinetics across speed conditions. Inability to appropriately scale joint kinetics in PD may represent an inflexible neuromuscular system in PD, which may limit walking performance in this population.  相似文献   

13.
Tooth size and dental pathology in fossil hominids were studied to test for regional differences in these parameters. The results showed little regional variation in tooth size for the Middle and Upper Pleistocene sites compared (except for Krapina) but considerable differences in the severity of attrition and dental pathology. These differences were considered indicative of regional differences in the functional load borne by the teeth, and in view of the similar technological status of the groups studied, were attributed to environmental differences in the diet. Since, in all regions, reduction in tooth size appeared to continue at the same rate for the periods investigated, no association can be established between presumed selective pressures related to differences in functional demands made on the dentition, and tooth reduction.  相似文献   

14.
Comparative work among nonhominid primates has demonstrated that the basicranium becomes more flexed with increasing brain size relative to basicranial length and as the -upper and lower face become more ventrally deflected (Ross and Ravosa [1993] Am. J. Phys. Anthropol. 91:305–324). In order to determine whether modern humans and fossil hominids follow these trends, the cranial base angle (measure of basicranial flexion), angle of facial kyphosis, and angle of orbital axis orientation were measured from computed tomography (CT) scans of fossil hominids (Sts 5, MLD 37/38, OH9, Kabwe) and lateral radiographs of 99 extant humans. Brain size relative to basicranial length was calculated from measures of neurocranial volume and basicranial length taken from original skulls, radiographs, CT scans, and the literature. Results of bivariate correlation analyses revealed that among modern humans basicranial flexion and brain size/basicranial length are not significantly correlated, nor are the angles of orbital axis orientation and facial kyphosis. However, basicranial flexion and orbit orientation are significantly positively correlated among the humans sampled, as are basicranial flexion and the angle of facial kyphosis. Relative to the comparative sample from Ross and Ravosa (1993), all hominids have more flexed basicrania than other primates: Archaic Homo sapiens, Homo erectus, and Australopithecus africanus do not differ significantly from Modern Homo sapiens in their degree of basicranial flexion, although they differ widely in their relative brain size. Comparison of the hominid values with those predicted by the nonhominid reduced major-axis equations reveal that, for their brain size/basicranial length, Archaic and Modern Homo sapiens have less flexed basicrania than predicted. H. erectus and A. africanus have the degree of basicranial flexion predicted by the nonhominid reduced major-axis equation. Modern humans have more ventrally deflected orbits than all other primates and, for their degree of basicranial flexion, have more ventrally deflected orbits than predicted by the regression equations for hominoids. All hominoids have more ventrally deflected orbital axes relative to their palate orientation than other primates. It is argued that hominids do not strictly obey the trend for basicranial flexion to increase with increasing relative brain size because of constraints on the amount of flexion that do not allow it to decrease much below 90°. Therefore, if basicranial flexion is a mechanism for accommodating an expanding brain among non-hominid primates, other mechanisms must be at work among hominids. © 1995 Wiley-Liss, Inc.  相似文献   

15.
As humans walk or run, external (environmental) and internal (physiological) disturbances induce variability. How humans regulate this variability from stride-to-stride can be critical to maintaining balance. One cannot infer what is “controlled” based on analyses of variability alone. Assessing control requires quantifying how deviations are corrected across consecutive movements. Here, we assessed walking and running, each at two speeds. We hypothesized differences in speed would drive changes in variability, while adopting different gaits would drive changes in how people regulated stepping. Ten healthy adults walked/ran on a treadmill under four conditions: walk or run at comfortable speed, and walk or run at their predicted walk-to-run transition speed. Time series of relevant stride parameters were analyzed to quantify variability and stride-to-stride error-correction dynamics within a Goal-Equivalent Manifold (GEM) framework. In all conditions, participants’ stride-to-stride control respected a constant-speed GEM strategy. At each consecutively faster speed, variability tangent to the GEM increased (p ≤ 0.031), while variability perpendicular to the GEM decreased (p ≤ 0.044). There were no differences (p ≥ 0.999) between gaits at the transition speed. Differences in speed determined how stepping variability was structured, independent of gait, confirming our first hypothesis. For running versus walking, measures of GEM-relevant statistical persistence were significantly less (p ≤ 0.004), but showed minimal-to-no speed differences (0.069 ≤ p ≤ 0.718). When running, people corrected deviations both more quickly and more directly, each indicating tighter control. Thus, differences in gait determined how stride-to-stride fluctuations were regulated, independent of speed, confirming our second hypothesis.  相似文献   

16.
Restoring functional gait speed is an important goal for rehabilitation post-stroke. During walking, transferring of one’s body weight between the limbs and maintaining balance stability are necessary for independent functional gait. Although it is documented that individuals post-stroke commonly have difficulties with performing weight transfer onto their paretic limbs, it remains to be determined if these deficits contributed to slower walking speeds. The primary purpose of this study was to compare the weight transfer characteristics between slow and fast post-stroke ambulators. Participants (N = 36) with chronic post-stroke hemiparesis walked at their comfortable and maximal walking speeds on a treadmill. Participants were stratified into 2 groups based on their comfortable walking speeds (≥0.8 m/s or <0.8 m/s). Minimum body center of mass (COM) to center of pressure (COP) distance, weight transfer timing, step width, lateral foot placement relative to the COM, hip moment, peak vertical and anterior ground reaction forces, and changes in walking speed were analyzed. Results showed that slow walkers walked with a delayed and deficient weight transfer to the paretic limb, lower hip abductor moment, and more lateral paretic limb foot placement relative to the COM compared to fast walkers. In addition, propulsive force and walking speed capacity was related to lateral weight transfer ability. These findings demonstrated that deficits in lateral weight transfer and stability could potentially be one of the limiting factors underlying comfortable walking speeds and a determinant of chronic stroke survivors’ ability to increase walking speed.  相似文献   

17.
The chronometric framework developed for Plio-Pleistocene deposits of the northern Turkana Basin is reviewed in light of recent advances in lithostratigraphy, geochemical correlation, paleomagnetic stratigraphy, and isotopic dating. The sequence is tightly controlled by 20 precise ages on volcanic materials. These ages are internally consistent but are at variance with estimates for the boundaries of the magnetic polarity time scale by about 0.07 my. This discrepancy can be only partially resolved at present. Based on the established chronometric framework and stratigraphic sequences, depositional ages can be estimated for significant marker beds. These ages can in turn be used to constrain the 449 hominid specimens thus far reported from the basin. Ages for most hominid specimens can be estimated with a precision of +/- 0.05 my. In addition, the chronometric framework will be applicable to other paleontological collections, archeological excavations, and future discoveries in the basin.  相似文献   

18.
The gluteal musculature of primates has been a focus of great research interest among those who study human evolution. Most current theorists agree that gluteus superficialis (= maximus) need not have changed its action in the step from pongid to hominid, but dispute has arisen over a purported change in action and role of the gluteus medius. To clarify the functions of gluteus medius, gluteus superficialis, and tensor fasciae femoris during ape locomotion, we conducted a telemetered electromyographic study of these muscles in two gibbons, one orangutan, and four chimpanzees as they walked bipedally on the ground and on a horizontal tree trunk, walked quadrupedally on the same substrates, and climbed a vertical tree trunk. The results indicate that the gluteus medius of apes is not, as has been previously suggested, primarily an extensor of the thigh; its action is chiefly that of medial rotation. The role of the gluteus medius during bipedality is the same in apes and humans–to provide side-to-side balance of the trunk at the hip. The change in the hominid lateral balance mechanism can be viewed as primarily osteological, allowing preservation of the same muscle function with an extended thigh. As a result, the stride length is increased and there occurs a diminution of the demands placed on other muscles to maintain anteroposterior balance at the hip and knee. Our data also support the view that vertical climbing may be specifically preadaptive to bipedalism. One may picture the earliest hominid as part biped, when on the ground traveling between scattered food trees, and part climber, when moving from the ground to food.  相似文献   

19.
20.
This study combines traditional methods of assessing dental developmental status based upon modern human standards with new techniques based upon histological observations in order to reassess the age at death of the Gibraltar child from Devil's Tower. The results indicate that the most likely age of this individual at death was 3 years of age. This result is in agreement with an independent assessment of the age of the temporal bone of this specimen (Tillier, AM [1982] Z. Morphol. Anthropol. 73:125-148) and is concordant with dental developmental ages given for modern humans. Moreover, the fact that this specimen appears at the low end of the age scale for calcification stages in modern humans is also supportive of the findings of Legoux (Legoux, P [1970] Arch. Inst. Paleontol. Hum. Mem. 33:53-87) and Wolpoff (Wolpoff, MH [1979] Am. J. Phys. Anthropol. 50:67-114) that dental eruption schedules in Neanderthals were also accelerated. If the cranial bones from Devil's Tower are associated with the dental material, as we believe, they indicate a remarkably precocious brain growth in this individual, which is consistent with what is known about general growth and development in Neanderthals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号