首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycodiversification of natural products is an effective strategy for small molecule drug development. Recently, improved methods for chemo-enzymatic synthesis of glycosyl donors has spurred the characterization of natural product glycosyltransferases (GTs), revealing that the substrate specificity of many naturally occurring GTs as too stringent for use in glycodiversification. Protein engineering of natural product GTs has emerged as an attractive approach to overcome this limitation. This review highlights recent progress in the engineering/evolution of enzymes relevant to natural product glycodiversification with a particular focus upon GTs.  相似文献   

2.
Glycosyltransferases (GTs) are abundant in nature and diverse in their range of substrates. Application of GTs is, however, often complicated by their narrow substrate specificity. GTs with tailored specificities are highly demanded for targeted glycosylation reactions. Engineering of such GTs is, however, restricted by lack of practical and broad-scope assays currently available. Here we present an improvement of an inexpensive and simple assay that relies on the enzymatic detection of inorganic phosphate cleaved from nucleoside phosphate products released in GT reactions. This phosphatase-coupled assay (PCA) is compared with other GT assays: a pH shift assay and a commercially available immunoassay in Escherichia coli cell-free extract (CE). Furthermore, we probe PCA with three GTs with different specificities. Our results demonstrate that PCA is a versatile and apparently general GT assay with a detection limit as low as 1 mU. The detection limit of the pH shift assay is roughly 4 times higher. The immunoassay, by contrast, detected only nucleoside diphosphates (NDPs) but had the lowest detection limit. Compared with these assays, PCA showed superior robustness and, therefore, appears to be a suitable general screening assay for nucleotide sugar-dependent GTs.  相似文献   

3.
This protocol details the application of a high-throughput fluorescence-based screen, in conjunction with error-prone PCR/saturation mutagenesis, for altering the proficiency and/or promiscuity of a secondary metabolite glycosyltransferase (GT) via directed evolution. Given the structural and mechanistic similarities among secondary metabolite-associated GTs, this approach may provide a template for engineering other members of the GT-B superfamily.  相似文献   

4.
Glycosylation of natural products can influence their pharmacological properties, and efficient glycosyltransferases (GTs) are critical for this purpose. The polyketide epothilones are potent anti-tumour compounds, and YjiC is the only reported GT for the glycosylation of epothilone. In this study, we phylogenetically analysed 8261 GTs deposited in CAZy database and revealed that YjiC locates in a subbranch of the Macrolide I group, forming the YjiC-subbranch with 160 GT sequences. We demonstrated that the YjiC-subbranch GTs are normally efficient in epothilone glycosylation, but some showed low glycosylation activities. Sequence alignment of YjiC-subbranch showed that the 66th and 77th amino acid residues, which were close to the catalytic cavity in molecular docking model, were conserved in five high-active GTs (Q66 and P77) but changed in two low-efficient GTs. Site-directed residues swapping at the two positions in the two low-active GTs (BssGT and BamGT) and the high-active GT BsGT-1 demonstrated that the two amino acid residues played an important role in the catalytic efficiency of epothilone glycosylation. This study highlights that the potent GTs for appointed compounds are phylogenetically grouped with conserved residues for the catalytic efficiency.  相似文献   

5.
Glycosyltransferases (GTs) are crucial enzymes in the biosynthesis and diversification of therapeutically important natural products, and the majority of them belong to the GT-B superfamily, which is composed of separate N- and C-domains that are responsible for the recognition of the sugar acceptor and donor, respectively. In an effort to expand the substrate specificity of GT, a chimeric library with different crossover points was constructed between the N-terminal fragments of kanamycin GT (kanF) and the C-terminal fragments of vancomycin GT (gtfE) genes by incremental truncation method. A plate-based pH color assay was newly developed for the selection of functional domain-swapped GTs, and a mutant (HMT31) with a crossover point (N-kanF-669 bp and 753 bp-gtfE-C) for domain swapping was screened. The most active mutant HMT31 (50 kDa) efficiently catalyzed 2-DOS (aglycone substrate for KanF) glucosylation using dTDP-glucose (glycone substrate for GtfE) with k(cat)/K(m) of 162.8 +/- 0.1 mM(-1) min(-1). Moreover, HMT31 showed improved substrate specificity toward seven more NDP-sugars. This study presents a domain swapping method as a potential means to glycorandomization toward various syntheses of 2-DOS-based aminoglycoside derivatives.  相似文献   

6.
Shao H  He X  Achnine L  Blount JW  Dixon RA  Wang X 《The Plant cell》2005,17(11):3141-3154
Glycosylation is a ubiquitous reaction controlling the bioactivity and storage of plant natural products. Glycosylation of small molecules is catalyzed by a superfamily of glycosyltransferases (GTs) in most plant species studied to date. We present crystal structures of the UDP flavonoid/triterpene GT UGT71G1 from Medicago truncatula bound to UDP or UDP-glucose. The structures reveal the key residues involved in the recognition of donor substrate and, by comparison with other GT structures, suggest His-22 as the catalytic base and Asp-121 as a key residue that may assist deprotonation of the acceptor by forming an electron transfer chain with the catalytic base. Mutagenesis confirmed the roles of these key residues in donor substrate binding and enzyme activity. Our results provide an initial structural basis for understanding the complex substrate specificity and regiospecificity underlying the glycosylation of plant natural products and other small molecules. This information will direct future attempts to engineer bioactive compounds in crop plants to improve plant, animal, and human health and to facilitate the rational design of GTs to improve the storage and stability of novel engineered bioactive compounds.  相似文献   

7.
Engineering of glycosyltransferases (GTs) with desired substrate specificity for the synthesis of new oligosaccharides holds great potential for the development of the field of glycobiology. However, engineering of GTs by directed evolution methodologies is hampered by the lack of efficient screening systems for sugar-transfer activity. We report here the development of a new fluorescence-based high-throughput screening (HTS) methodology for the directed evolution of sialyltransferases (STs). Using this methodology, we detected the formation of sialosides in intact Escherichia coli cells by selectively trapping the fluorescently labeled transfer products in the cell and analyzing and sorting the resulting cell population using a fluorescence-activated cell sorter (FACS). We screened a library of >10(6) ST mutants using this methodology and found a variant with up to 400-fold higher catalytic efficiency for transfer to a variety of fluorescently labeled acceptor sugars, including a thiosugar, yielding a metabolically stable product.  相似文献   

8.
The confounding consequences of Helicobacter bilis infection in experimental mice populations are well recognized, but the role of this bacterium in human diseases is less known. Limited data are available on virulence determinants of this species. In Helicobacter pylori, γ-glutamyltranspeptidase (γGT) contributes to the colonization of the gastric mucosa and to the pathogenesis of peptic ulcer. The role of γGT in H. bilis infections remains unknown. The annotated genome sequence of H. bilis revealed two putative ggt genes and our aim was to characterize these H. bilis γGT paralogues. We performed a phylogenetic analysis to understand the evolution of Helicobacter γGTs and to predict functional activities of these two genes. In addition, both copies of H. bilis γGTs were expressed as recombinant proteins and their biochemical characteristics were analysed. Functional complementation of Esherichia coli deficient in γGT activity and deletion of γGT in H. bilis were performed. Finally, the inhibitory effect of T-cell and gastric cell proliferation by H. bilis γGT was assessed. Our results indicated that one gene is responsible for γGT activity, while the other showed no γGT activity due to lack of autoprocessing. Although both H. bilis and H. pylori γGTs exhibited a similar affinity to L-Glutamine and γ-Glutamyl-p-nitroanilide, the H. bilis γGT was significantly less active. Nevertheless, H. bilis γGT inhibited T-cell proliferation at a similar level to that observed for H. pylori. Finally, we showed a similar suppressive influence of both H. bilis and H. pylori γGTs on AGS cell proliferation mediated by an apoptosis-independent mechanism. Our data suggest a conserved function of γGT in the Helicobacter genus. Since γGT is present only in a few enterohepatic Helicobacter species, its expression appears not to be essential for colonization of the lower gastrointestinal tract, but it could provide metabolic advantages in colonization capability of different niches.  相似文献   

9.
Bioactive natural products, such as polyketides, flavonoids, glycopeptides, and aminoglycosides, have been used as therapeutic agents. Many of them contain structurally diverse sugar moieties attached to the aglycone core structures. Glycosyltransferases (GTs) catalyze the attachment of nucleotide-activated sugar substrates to acceptor aglycones. Because these sugar moieties are usually essential for biological activity, in vivo pathway engineering in prokaryotic hosts and in vitro enzymatic approaches coupled with GT engineering are currently being used to synthesize novel glycosylated derivatives, and some of them exhibited improved biological activities compared to the parent molecules. Therefore, harnessing the potential of diverse glycosylation reactions in prokaryotes will increase the structural diversity of natural products and the possibility to generate new bioactive products.  相似文献   

10.
Glycosyltransferases (GTs) are a large and ubiquitous family of enzymes that specifically transfer sugar moieties to a range of substrates. Mycobacterium tuberculosis contains a large number of GTs, many of which are implicated in cell wall synthesis, yet the majority of these GTs remain poorly characterized. Here, we report the high resolution crystal structures of an essential GT (MAP2569c) from Mycobacterium avium subsp. paratuberculosis (a close homologue of Rv1208 from M. tuberculosis) in its apo- and ligand-bound forms. The structure adopted the GT-A fold and possessed the characteristic DXD motif that coordinated an Mn(2+) ion. Atypical of most GTs characterized to date, MAP2569c exhibited specificity toward the donor substrate, UDP-glucose. The structure of this ligated complex revealed an induced fit binding mechanism and provided a basis for this unique specificity. Collectively, the structural features suggested that MAP2569c may adopt a "retaining" enzymatic mechanism, which has implications for the classification of other GTs in this large superfamily.  相似文献   

11.
Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. moellendorffii genome across 92 GT families and an additional family (DUF266) likely to include GTs. The study encompasses the moss Physcomitrella patens, a non-vascular land plant, while rice and Arabidopsis represent commelinid and non-commelinid seed plants. Analysis of the subset of GT-families particularly relevant to cell wall polysaccharide biosynthesis was complemented by a detailed analysis of S. moellendorffii cell walls. The S. moellendorffii cell wall contains many of the same components as seed plant cell walls, but appears to differ somewhat in its detailed architecture. The S. moellendorffii genome encodes fewer GTs (287 GTs including DUF266s) than the reference genomes. In a few families, notably GT51 and GT78, S. moellendorffii GTs have no higher plant orthologs, but in most families S. moellendorffii GTs have clear orthologies with Arabidopsis and rice. A gene naming convention of GTs is proposed which takes orthologies and GT-family membership into account. The evolutionary significance of apparently modern and ancient traits in S. moellendorffii is discussed, as is its use as a reference organism for functional annotation of GTs.  相似文献   

12.
The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate‐Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell‐wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full‐length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/ .  相似文献   

13.
We identified two glycosyltransferases that contribute to the structural diversification of flavonol glycosides in grapevine (Vitis vinifera): glycosyltransferase 5 (Vv GT5) and Vv GT6. Biochemical analyses showed that Vv GT5 is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (GAT), and Vv GT6 is a bifunctional UDP-glucose/UDP-galactose:flavonol-3-O-glucosyltransferase/galactosyltransferase. The Vv GT5 and Vv GT6 genes have very high sequence similarity (91%) and are located in tandem on chromosome 11, suggesting that one of these genes arose from the other by gene duplication. Both of these enzymes were expressed in accordance with flavonol synthase gene expression and flavonoid distribution patterns in this plant, corroborating their significance in flavonol glycoside biosynthesis. The determinant of the specificity of Vv GT5 for UDP-glucuronic acid was found to be Arg-140, which corresponded to none of the determinants previously identified for other plant GATs in primary structures, providing another example of convergent evolution of plant GAT. We also analyzed the determinants of the sugar donor specificity of Vv GT6. Gln-373 and Pro-19 were found to play important roles in the bifunctional specificity of the enzyme. The results presented here suggest that the sugar donor specificities of these Vv GTs could be determined by a limited number of amino acid substitutions in the primary structures of protein duplicates, illustrating the plasticity of plant glycosyltransferases in acquiring new sugar donor specificities.  相似文献   

14.
The rice (Oryza sativa) GTs belong to a super family possibly with hundreds of members. However, which GTs are involved in plant response to toxic chemicals is unknown. Here, we demonstrated 59 novel GT genes screened from our recent genome-wide sequencing datasets of rice crops exposed to atrazine (a herbicide persistent in ecosystems). Analysis of GT genes showed that most of the GTs contain functional domains typically found in proteins transferring glycosyl moieties to their target compounds. A phylogenetic analysis revealed that many GT genes from different families have diverse cis-elements necessary for response to biotic and environmental stresses. Experimental validation for the GTs was undertaken through a microarray, and 36 GT genes were significantly detected with an expression pattern similar to that from deep-sequencing datasets. Furthermore, 12 GT genes were randomly selected and confirmed by quantitative real-time RT-PCR. Finally, the special activity of total GTs was determined in rice roots and shoots, with an increased activity under the atrazine exposure. This response was closely associated with atrazine absorption in the rice tissues. These results indicate that exposure to atrazine can trigger specific GT genes and enzyme activities in rice.  相似文献   

15.
Camptotheca acuminata is a main source of the anti-cancer drug camptothecin (CPT). In this species, several studies have observed non-glandular trichomes (NGTs) and glandular trichomes (GTs). It has been assumed that GTs contain CPT, yet this has not been proven and no information is available on the accumulation of other secondary metabolites. The objective of this study was to describe the morphology, distribution and structure of C. acuminata trichomes and to investigate the chemical nature of the substances secreted by GTs. Light and fluorescence microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to determine the morphology, distribution and structure of GTs and NGTs. Thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) analyses were carried out to confirm the presence of CPT in GTs, and histochemical tests were performed to investigate the presence of other secondary metabolites. C. acuminata possesses two types of GTs (GT1 and GT2), which differ in terms of their morphology, pattern of distribution and accumulated substances. The chemical analyses demonstrated that both GT1 and GT2 accumulate CPT. Histochemical analysis showed that phenols accumulate in the vacuole of GT2s. No isoprenoids were detected in GTs.  相似文献   

16.
C Brown  F Leijon  V Bulone 《Nature protocols》2012,7(9):1634-1650
Most of the glycosyltransferases (GTs) that catalyze the formation of plant cell wall carbohydrates remain to be biochemically characterized. This can be achieved only if specific assays are available for these enzymes. Here we present a protocol for in vitro assays of processive and nonprocessive membrane-bound GTs. The assays are either based on the use of radioactive nucleotide sugars (NDP sugars; e.g., UDP-[U-(14)C]glucose) and the quantification of the radiolabeled monosaccharides incorporated into soluble or insoluble carbohydrates, or on the coupling of the GT reaction with that of pyruvate kinase (PK) and the oxidation of NADH by lactate dehydrogenase (LDH). The radiometric assays are more suitable for exploratory work on poorly characterized enzymes, whereas the spectrophotometric assays require the availability of highly enriched GTs. Both assays can be performed within 1 d, depending on the number of fractions to be assayed or reaction mixtures to be tested.  相似文献   

17.
Glycosyltransferases (GTs) are ubiquitous in nature and are required for the transfer of sugars to a variety of important biomolecules. This essential enzyme family has been a focus of attention from both the perspective of a potential drug target and a catalyst for the development of vaccines, biopharmaceuticals and small molecule therapeutics. This review attempts to consolidate the emerging lessons from Leloir (nucleotide-dependent) GT structural biology studies and recent applications of these fundamentals toward rational engineering of glycosylation catalysts.  相似文献   

18.
Plant Family 1 glycosyltransferases (GTs) recognize a wide range of natural and non-natural scaffolds and have considerable potential as biocatalysts for the synthesis of small molecule glycosides. Regiospecificity of glycosylation is an important property, given that many acceptors have multiple potential glycosylation sites. This study has used a domain-swapping approach to explore the determinants of regiospecific glycosylation of two GTs of Arabidopsis thaliana, UGT74F1 and UGT74F2. The flavonoid quercetin was used as a model acceptor, providing five potential sites for O-glycosylation by the two GTs. As is commonly found for many plant GTs, both of these enzymes produce distinct multiple glycosides of quercetin. A high performance liquid chromatography method has been established to perform detailed steady-state kinetic analyses of these concurrent reactions. These data show the influence of each parameter in determining a GT product formation profile toward quercetin. Interestingly, construction and kinetic analyses of a series of UGT74F1/F2 chimeras have revealed that mutating a single amino acid distal to the active site, Asn-142, can lead to the development of a new GT with a more constrained regiospecificity. This ability to form the 4 '-O-glucoside of quercetin is transferable to other flavonoid scaffolds and provides a basis for preparative scale production of flavonoid 4 '-O-glucosides through the use of whole-cell biocatalysis.  相似文献   

19.
Monotopic glycosyltransferases (GTs) interact with membranes via electrostatic interactions. The N-terminal domain is permanently anchored to the membrane while the membrane interaction of the C-terminal domain is believed to be weaker so that it undergoes a functionally relevant conformational change upon donor or acceptor binding. Here, we studied the applicability of this model to the glycosyltransferase WaaG. WaaG is involved in the synthesis of lipopolysaccharides (LPS) in Gram-negative bacteria and was previously categorized as a monotopic GT. We analyzed the binding of WaaG to membranes by stopped-flow fluorescence and NMR diffusion experiments. We find that electrostatic interactions are required to bind WaaG to membranes while mere hydrophobic interactions are not sufficient. WaaG senses the membrane's surface charge density but there is no preferential binding to specific anionic lipids. However, the binding is weaker than expected for monotopic GTs but similar to peripheral GTs. Therefore, WaaG may be a peripheral GT and this could be of functional relevance in vivo since LPS synthesis occurs only when WaaG is membrane-bound. We could not observe a C-terminal domain movement under our experimental conditions.  相似文献   

20.
Franco OL  Rigden DJ 《Glycobiology》2003,13(10):707-712
Glycosyltransferases (GTs) are diverse enzymes organized into 65 families. X-ray crystallography and in silico studies have shown many of these to belong to two structural superfamilies: GT-A and GT-B. Through application of fold recognition and iterated sequence searches, we demonstrate that families 60, 62, and 64 may also be grouped into the GT-A fold superfamily. Analysis of conserved acidic residues suggests that catalytic sites are better conserved in superfamily GT-B than in GT-A. Although 26% and 29% of GT families may now be confidently placed in superfamilies GT-A and GT-B, respectively, the remaining 45% of families bear no discernible resemblance to either superfamily, which, given the sensitivity of modern fold recognition methods, suggests the existence of novel structural scaffolds associated with GT activity. Furthermore, bioinformatics studies indicate the apparent ease with which mechanism-inverting or retaining-may change during evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号