首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Hepatocellular carcinoma (HCC) remains one of the most prevalent malignant diseases worldwide, and the majority of cases are related to hepatitis B virus (HBV) infection. Interactions between the HBV-encoded X (HBx) protein and host factors are known to play major roles in the onset and progression of HBV-related HCC. These dynamic molecular mechanisms are extremely complex and lead to prominent changes in the host genetic and epigenetic architecture. This review summarizes the current knowledge about HBx-induced epigenetic changes, including aberrations in DNA methylation, histone modifications, and microRNA expression, and their roles in HBV-infected liver cells and HBV-related HCC. Moreover, the HBx-mediated epigenetic control of HBV covalently closed circular DNA (cccDNA) is also discussed. Although this field of study is relatively new, the accumulated evidence has indicated that the epigenetic events induced by HBx play important roles in the development of HBV-related HCC. Ongoing research will help to identify practical applications of the HBV-related epigenetic signatures as biomarkers for early HCC detection or as potential targets to prevent and treat HBV-related HCC.  相似文献   

4.
The development of hepatocellular carcinoma (HCC) is believed to be associated with multiple risk factors, including the infection of hepatitis B virus (HBV). Based on the analysis of individual genes, evidence has indicated the association between HCC and HBV and has also been expanded to epigenetic regulation, with an involvement of HBV in the DNA methylation of the promoter of cellular target genes leading to changes in their expression. Proteomic study has been widely used to map a comprehensive protein profile, which in turn could provide a better understanding of underlying mechanisms of disease onset. In the present study, we performed a proteomic profiling by using iTRAQ‐coupled 2‐D LC/MS‐MS analysis to identify cellular genes down‐regulated in HBV‐producing HepG2.2.15 cells compared with HepG2 cells. A total of 15 proteins including S100A6 and Annexin A2 were identified by our approach. The significance of these cellular proteins as target of HBV‐mediated epigenetic regulation was supported by our validation assays, including their reactivation in cells treated with 5‐aza‐2′‐deoxycytidine (a DNA methyltransferase inhibitor) by real‐time RT‐PCR and Western blot analysis, as well as the DNA methylation status analysis by bisulfite genome sequencing. Our approach provides a comprehensive analysis of cellular target proteins to HBV‐mediated epigenetic regulation and further analysis should facilitate a better understanding of its involvement in HCC development.  相似文献   

5.
Liver cancer in men is the second leading cause of cancer death and hepatocellular carcinoma (HCC) accounts for 70%-85% of the total liver cancer worldwide. Chronic infection with hepatitis B virus (HBV) is the major cause of HCC. Chronic, intermittently active inflammation provides “fertile field” for “mutation, selection, and adaptation” of HBV and the infected hepatocytes, a long-term evolutionary process during HBV-induced carcinogenesis. HBV mutations, which are positively selected by insufficient immunity, can promote and predict the occurrence of HCC. Recently, advanced sequencing technologies including whole genome sequencing, exome sequencing, and RNA sequencing provide opportunities to better under-stand the insight of how somatic mutations, structure variations, HBV integrations, and epigenetic modifications contribute to HCC development. Genomic variations of HCC caused by various etiological factors may be different, but the common driver mutations are important to elucidate the HCC evolutionary process. Genome-wide analyses of HBV integrations are helpful in clarifying the targeted genes of HBV in carcinogenesis and disease progression. RNA sequencing can identify key molecules whose expressions are epigenetically modified during HCC evolution. In this review, we summarized the current findings of next generation sequencings for HBV-HCC and proposed a theory framework of Cancer Evolution and Development based on the current knowledge of HBV-induced HCC to characterize and interpret evolutionary mechanisms of HCC and possible other cancers. Understanding the key viral and genomic variations involved in HCC evolution is essential for generating effective diagnostic, prognostic, and predictive biomarkers as well as therapeutic targets for the interventions of HBV-HCC.  相似文献   

6.
Hepatitis B virus(HBV) is a major cause of hepatocellular carcinoma(HCC). Its chronic infection can lead to chronic liver inflammation and the accumulation of genetic alterations to result in the oncogenic transformation of hepatocytes. HBV can also sensitize hepatocytes to oncogenic transformation by causing genetic and epigenetic changes of the host chromosomes. HBV DNA can insert into host chromosomes and recent large-scale whole-genome sequencing studies revealed recurrent HBV DNA integrations sites that may play important roles in the initiation of hepatocellular carcinogenesis. HBV can also cause epigenetic changes by altering the methylation status of cellular DNA, the post-translational modification of histones, and the expression of micro RNAs. These changes can also lead to the eventual hepatocellular transformation. These recent findings on the genetic and epigenetic alterations of the host chromosomes induced by HBV opened a new avenue for the development of novel diagnosis and treatments for HBV-induced HCC.  相似文献   

7.
The incidence of hepatocellular carcinoma (HCC) is closely correlated with hepatitis B virus (HBV)-induced liver cirrhosis. Structural changes in the glycans of serum and tissue proteins are reliable indicators of liver damage. However, little is known about the alteration of liver glycopatterns during cirrhosis and tumor progression induced by HBV infection. This study compared the differential expression of liver glycopatterns in 7 sets of normal pericarcinomatous tissues (PCTs), cirrhotic, and tumor tissues from patients with liver cirrhosis and HCC induced by HBV using lectin microarrays. Fluorescence-based lectin histochemistry and lectin blotting were further utilized to validate and assess the expression and distribution of certain glycans in 9 sets of corresponding liver tissue sections. Eight lectins (e.g., Jacalin and AAL) revealed significant difference in cirrhotic tissues versus PCTs. Eleven lectins (e.g., EEL and SJA) showed significant alteration during cirrhotic and tumor progression. The expression of Galα1-3(Fucα1-2)Gal (EEL) and fucosyltransferase 1 was mainly increasing in the cytoplasm of hepatocytes during PCTs-cirrhotic-tumor tissues progression, while the expression of T antigen (ACA and PNA) was decreased sharply in cytoplasm of tumor hepatocytes. Understanding the precision alteration of liver glycopatterns related to the development of hepatitis, cirrhosis, and tumor induced by HBV infection may help elucidate the molecular mechanisms underlying the progression of chronic liver diseases and develop new antineoplastic therapeutic strategies.  相似文献   

8.
Hepatocellular carcinoma (HCC) is the second most common cause of cancer mortality worldwide. Most cases of HCC are associated with cirrhosis related to chronic hepatitis B virus or hepatitis C virus infections. Hypermethylation of promoter regions is the main epigenetic mechanism of gene silencing and has been involved in HCC development. The aim of this study was to determine whether aberrant methylation of RASSF1A and DOK1 gene promoters is associated with the progression of liver disease in Brazilian patients. Methylation levels were measured by pyrosequencing in 41 (20 HCC, 9 cirrhotic, and 12 non-cirrhotic) liver tissue samples. Mean rates of methylation in RASSF1A and DOK1 were 16.2% and 12.0% in non-cirrhotic, 26.1% and 19.6% in cirrhotic, and 59.1% and 56.0% in HCC tissues, respectively, showing a gradual increase according to the progression of the disease, with significantly higher levels in tumor tissues. In addition, hypermethylation of RASSF1A and DOK1 was found in the vast majority (88%) of the HCC cases. Interestingly, DOK1 methylation levels in HCC samples were significantly higher in the group of younger (<40 years) patients, and higher in moderately differentiated than in poorly differentiated tumors (p < 0.05). Our results reinforce the hypothesis that hypermethylation of RASSF1A and DOK1 contributes to hepatocarcinogenesis and is associated to clinicopathological characteristics. RASSF1A and DOK1 promoter hypermethylation may be a valuable biomarker for early diagnosis of HCC and a potential molecular target for epigenetic-based therapy.  相似文献   

9.
肿瘤是机体在各种致癌因素刺激下,基因组发生变异导致细胞失去正常生长调控而异常增殖的一种恶性疾病.肿瘤具有维持细胞增殖信号、逃避生长抑制、抗细胞凋亡、无限复制、诱导血管生成、激活侵袭和转移、能量代谢的重编程和免疫逃避等特点.原发性肝癌是一种高致死性的癌症类型,在中国发病率高,约占全世界发病人数的一半.肝细胞癌是原发性肝癌中的主要组织学亚型,与乙型和丙型肝炎病毒感染、酒精刺激、肥胖以及饮食污染等有关.遗传学和表观遗传突变事件的研究有助于理解肝癌的发病机制并对患者进行分子分型,而分子分型则可以指导临床个体化治疗和预后判断.  相似文献   

10.
Senescence and epigenetic dysregulation in cancer   总被引:4,自引:0,他引:4  
Mammalian cells have a finite proliferative lifespan, at the end of which they are unable to enter S phase in response to mitogenic stimuli. They undergo morphological changes and synthesize an altered repertoire of cell type-specific proteins. This non-proliferative state is termed replicative senescence and is regarded as a major tumor suppressor mechanism. The ability to overcome senescence and obtain a limitless replicative potential is called immortalization, and considered to be one of the prerequisites of cancer formation. While senescence mainly represents a genetically governed process, epigenetic changes in cancer have received increasing attention as an alternative mechanism for mediating gene expression changes in transformed cells. DNA methylation of promoter-containing CpG islands has emerged as an epigenetic mechanism of silencing tumor suppressor genes. New insights are being gained into the mechanisms causing aberrant methylation in cancer and evidence suggests that aging is accompanied by accumulation of cells with aberrant CpG island methylation. Aberrant methylation may contribute to many of the physiological and pathological changes associated with aging including tumor development. Finally, we describe how genes involved in promoting longevity might inhibit pathways promoting tumorigenesis.  相似文献   

11.
Epigenetic changes in virus-associated human cancers   总被引:6,自引:0,他引:6  
Li HP  Leu YW  Chang YS 《Cell research》2005,15(4):262-271
Epigenetics of human cancer becomes an area of emerging research direction due to a growing understanding of specific epigenetic pathways and rapid development of detection technologies. Aberrant promoter hypermethylation is a prevalent phenonmena in human cancers. Tumor suppressor genes are often hypermethylated due to the increased activity or deregulation of DNMTs. Increasing evidence also reveals that viral genes are one of the key players in regulating DNA methylation. In this review, we will focus on hypermethylation and tumor suppressor gene silencing and the signal pathways that are involved, particularly in cancers closely associated with the hepatitis B virus, simian virus 40 (SV40), and Epstein-Barr virus. In addition, we will discuss current technologies for genome-wide detection of epigenetically regulated targets, which allow for systematic DNA hypermethylation analysis. The study of epigenetic changes should provide a global view of gene profile in cancer, and epigenetic markers could be used for early detection, prognosis, and therapy of cancer.  相似文献   

12.
Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks.  相似文献   

13.
14.
Hepatocellular carcinoma is the main type of primary liver cancer, and also one of the most malignant tumors. At present, the pathogenesis mechanisms of liver cancer are not entirely clear. It has been shown that inactivation of tumor suppressor genes and activation of oncogenes play a significant role in carcinogenesis, caused by the genetic and epigenetic aberrance. In the past, people generally thought that genetic mutation is a key event of tumor pathogenesis, and somatic mutation of tumor suppressor genes is in particular closely associated with oncogenesis. With deeper understanding of tumors in recent years, increasing evidence has shown that epigenetic silencing of those genes, as a result of aberrant hypermethylation of CpG islands in promoters and histone modification, is essential to carcinogenesis and metastasis. The term epigenetics refers to heritable changes in gene expression caused by regulation mechanisms, other than changes in the underlying DNA sequence. Specific epigenetic processes include DNA methylation, genome imprinting, chromotin remodeling, histone modification and microRNA regulations. This paper reviews recent epigenetics research progress in the hepatocellular carcinoma study, and tries to depict the relationships between hepatocellular carcinomagenesis and DNA methylation as well as microRNA regulation. Supported by National Basic Research Program of China (Grant No. 2006CD910402) and Science and Technology Commission of Shanghai Municipality (Grant No. 05DZ22201 and 08JC1416400).  相似文献   

15.
16.
17.
18.
Cancers of the upper aerodigestive tract (UADT) are common forms of malignancy associated with tobacco and alcohol exposures, although human papillomavirus and nutritional deficiency are also important risk factors. While somatically acquired DNA methylation changes have been associated with UADT cancers, what triggers these events and precise epigenetic targets are poorly understood. In this study, we applied quantitative profiling of DNA methylation states in a panel of cancer-associated genes to a case-control study of UADT cancers. Our analyses revealed a high frequency of aberrant hypermethylation of several genes, including MYOD1, CHRNA3 and MTHFR in UADT tumors, whereas CDKN2A was moderately hypermethylated. Among differentially methylated genes, we identified a new gene (the nicotinic acetycholine receptor gene) as target of aberrant hypermethylation in UADT cancers, suggesting that epigenetic deregulation of nicotinic acetycholine receptors in non-neuronal tissues may promote the development of UADT cancers. Importantly, we found that sex and age is strongly associated with the methylation states, whereas tobacco smoking and alcohol intake may also influence the methylation levels in specific genes. This study identifies aberrant DNA methylation patterns in UADT cancers and suggests a potential mechanism by which environmental factors may deregulate key cellular genes involved in tumor suppression and contribute to UADT cancers.Key words: DNA methylation, upper aerodigestive tract, cancer, risk factors, biomarkers  相似文献   

19.
20.

Background

Liver cirrhosis is the most important risk factor for hepatocellular carcinoma (HCC) but the role of liver disease aetiology in cancer development remains under-explored. We investigated global gene expression profiles from HCC arising in different liver diseases to test whether HCC development is driven by expression of common or different genes, which could provide new diagnostic markers or therapeutic targets.

Methodology and Principal Findings

Global gene expression profiling was performed for 4 normal (control) livers as well as 8 background liver and 7 HCC from 3 patients with hereditary haemochromatosis (HH) undergoing surgery. In order to investigate different disease phenotypes causing HCC, the data were compared with public microarray repositories for gene expression in normal liver, hepatitis C virus (HCV) cirrhosis, HCV-related HCC (HCV-HCC), hepatitis B virus (HBV) cirrhosis and HBV-related HCC (HBV-HCC). Principal component analysis and differential gene expression analysis were carried out using R Bioconductor. Liver disease-specific and shared gene lists were created and genes identified as highly expressed in hereditary haemochromatosis HCC (HH-HCC) were validated using quantitative RT-PCR. Selected genes were investigated further using immunohistochemistry in 86 HCC arising in liver disorders with varied aetiology. Using a 2-fold cut-off, 9 genes were highly expressed in all HCC, 11 in HH-HCC, 270 in HBV-HCC and 9 in HCV-HCC. Six genes identified by microarray as highly expressed in HH-HCC were confirmed by RT qPCR. Serine peptidase inhibitor, Kazal type 1 (SPINK1) mRNA was very highly expressed in HH-HCC (median fold change 2291, p = 0.0072) and was detected by immunohistochemistry in 91% of HH-HCC, 0% of HH-related cirrhotic or dysplastic nodules and 79% of mixed-aetiology HCC.

Conclusion

HCC, arising from diverse backgrounds, uniformly over-express a small set of genes. SPINK1, a secretory trypsin inhibitor, demonstrated potential as a diagnostic HCC marker and should be evaluated in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号