首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a simple method of enzymatic synthesis of pre-adenylated DNA linkers/adapters for next-generation sequencing using thermostable RNA ligase from Methanobacterium thermoautotrophicum (MthRnl). Using RNA ligase for the reaction instead of the existing chemical or T4 DNA ligase-based methods allows quantitative conversion of 5'-phosphorylated single-stranded DNA (ssDNA) to the adenylated form. The MthRnl adenylation reaction is specific for ATP and either ssDNA or RNA. In the presence of Mg(+2), the reaction has a pH optimum of 6.0-6.5. Unlike reactions that use T4 DNA ligase, this protocol does not require synthesis of a template strand for adenylation. The high yield of the reaction simplifies isolation and purification of the adenylated product. Conducting the adenylation reaction at the elevated temperature (65°C) reduces structural constraints, while increased ATP concentrations allow quantitative adenylation of DNA with a 3'-unprotected end.  相似文献   

2.
The present study reported proof-of-principle for a genotyping assay approach that can detect single nucleotide polymorphisms (SNPs) through the gold nanoparticle assembly and the ligase reaction. By incorporating the high-fidelity DNA ligase (Tth DNA ligase) into the allele-specific ligation-based gold nanoparticle assembly, this assay provided a convenient yet powerful colorimetric detection that enabled a straightforward single-base discrimination without the need of precise temperature control. Additionally, the ligase reaction can be performed at a relatively high temperature, which offers the benefit for mitigating the non-specific assembly of gold nanoparticles induced by interfering DNA strands. The assay could be implemented via three steps: a hybridization reaction that allowed two gold nanoparticle-tagged probes to hybrid with the target DNA strand, a ligase reaction that generates the ligation between perfectly matched probes while no ligation occurred between mismatched ones and a thermal treatment at a relatively high temperature that discriminate the ligation of probes. When the reaction mixture was heated to denature the formed duplex, the purple color of the perfect-match solution would not revert to red, while the mismatch gave a red color as the assembled gold nanoparticles disparted. The present approach has been demonstrated with the identification of a single-base mutation in codon 12 of a K-ras oncogene that is of significant value for colorectal cancers diagnosis, and the wild-type and mutant type were successfully scored. To our knowledge, this was the first report concerning SNP detection based on the ligase reaction and the gold nanoparticle assembly. Owing to its ease of operation and high specificity, it was expected that the proposed procedure might hold great promise in practical clinical diagnosis of gene-mutant diseases.  相似文献   

3.
Shi C  Ge Y  Gu H  Ma C 《Biosensors & bioelectronics》2011,26(12):4697-4701
Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome.  相似文献   

4.
ABSTRACT: BACKGROUND: RNA ligases are essential reagents for many methods in molecular biology including NextGen RNA sequencing. To prevent ligation of RNA to itself, ATP independent mutant ligases, defective in self-adenylation, are often used in combination with activated pre-adenylated linkers. It is important that these ligases not have de-adenylation activity, which can result in activation of RNA and formation of background ligation products. An additional useful feature is for the ligase to be active at elevated temperatures. This has the advantage or reducing preferences caused by structures of single-stranded substrates and linkers. RESULTS: To create an RNA ligase with these desirable properties we performed mutational analysis of the archaeal thermophilic RNA ligase from Methanobacterium thermoautotrophicum. We identified amino acids essential for ATP binding and reactivity but dispensable for phosphodiester bond formation with 5' pre-adenylated donor substrate. The motif V lysine mutant (K246A) showed reduced activity in the first two steps of ligation reaction. The mutant has full ligation activity with pre-adenylated substrates but retained the undesirable activity of deadenylation, which is the reverse of step 2 adenylation. A second mutant, an alanine substitution for the catalytic lysine in motif I (K97A) abolished activity in the first two steps of the ligation reaction, but preserved wild type ligation activity in step 3. The activity of the K97A mutant is similar with either pre-adenylated RNA or single-stranded DNA (ssDNA) as donor substrates but we observed two-fold preference for RNA as an acceptor substrate compared to ssDNA with an identical sequence. In contrast, truncated T4 RNA ligase 2, the commercial enzyme used in these applications, is significantly more active using pre-adenylated RNA as a donor compared to pre-adenylated ssDNA. However, the T4 RNA ligases are ineffective in ligating ssDNA acceptors. CONCLUSIONS: Mutational analysis of the heat stable RNA ligase from Methanobacterium thermoautotrophicum resulted in the creation of an ATP independent ligase. The K97A mutant is defective in the first two steps of ligation but retains full activity in ligation of either RNA or ssDNA to a pre-adenylated linker. The ability of the ligase to function at 65 deg C should reduce the constraints of RNA secondary structure in RNA ligation experiments.  相似文献   

5.
A structured chemical platform based on chitosan, an amine-rich polysaccharide, is presented as an alternative chemistry to functionalize solid support (in this case, glass slides) for grafting biomolecules. This approach has been adopted for generating arrays using amino-modified oligonucleotides with two different lengths (25-mer and 70-mer) for different purposes. Results using these chitosan-activated surfaces indicate high oligonucleotide loading capacity, good availability to hybridization against targets, and effectiveness in enzyme-mediated single nucleotide polymorphism (SNP) detection procedures by DNA polymerase and DNA ligase enzymes with low background. Universal arrays have been prepared and extensively used with excellent results in different applications. The chitosan-treated surfaces were also evaluated for their performance in a gene expression experiment.  相似文献   

6.

Background

RNA ligases are essential reagents for many methods in molecular biology including NextGen RNA sequencing. To prevent ligation of RNA to itself, ATP independent mutant ligases, defective in self-adenylation, are often used in combination with activated pre-adenylated linkers. It is important that these ligases not have de-adenylation activity, which can result in activation of RNA and formation of background ligation products. An additional useful feature is for the ligase to be active at elevated temperatures. This has the advantage or reducing preferences caused by structures of single-stranded substrates and linkers.

Results

To create an RNA ligase with these desirable properties we performed mutational analysis of the archaeal thermophilic RNA ligase from Methanobacterium thermoautotrophicum. We identified amino acids essential for ATP binding and reactivity but dispensable for phosphodiester bond formation with 5’ pre-adenylated donor substrate. The motif V lysine mutant (K246A) showed reduced activity in the first two steps of ligation reaction. The mutant has full ligation activity with pre-adenylated substrates but retained the undesirable activity of deadenylation, which is the reverse of step 2 adenylation. A second mutant, an alanine substitution for the catalytic lysine in motif I (K97A) abolished activity in the first two steps of the ligation reaction, but preserved wild type ligation activity in step 3. The activity of the K97A mutant is similar with either pre-adenylated RNA or single-stranded DNA (ssDNA) as donor substrates but we observed two-fold preference for RNA as an acceptor substrate compared to ssDNA with an identical sequence. In contrast, truncated T4 RNA ligase 2, the commercial enzyme used in these applications, is significantly more active using pre-adenylated RNA as a donor compared to pre-adenylated ssDNA. However, the T4 RNA ligases are ineffective in ligating ssDNA acceptors.

Conclusions

Mutational analysis of the heat stable RNA ligase from Methanobacterium thermoautotrophicum resulted in the creation of an ATP independent ligase. The K97A mutant is defective in the first two steps of ligation but retains full activity in ligation of either RNA or ssDNA to a pre-adenylated linker. The ability of the ligase to function at 65°C should reduce the constraints of RNA secondary structure in RNA ligation experiments.  相似文献   

7.
A novel first generation (G1) poly(amidoamine) dendrimer (PAMAM) with graphene core (GG1PAMAM) was synthesized for the first time. Single layer of GG1PAMAM was immobilized covalently on mercaptopropionic acid (MPA) monolayer on Au transducer. This allows cost effective and easy deposition of single layer graphene on the Au transducer surface than the advanced vacuum techniques used in the literature. Au nano particles (17.5 nm) then decorated the GG1PAMAM and used for electrochemical DNA hybridization sensing. The sensor discriminates selectively and sensitively the complementary double stranded DNA (dsDNA, hybridized), non-complementary DNA (ssDNA, un-hybridized) and single nucleotide polymorphism (SNP) surfaces. Interactions of the MPA, GG1PAMAM and the Au nano particles were characterized by Ultra Violet (UV), Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), Thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cyclic Voltmetric (CV), Impedance spectroscopy (IS) and Differntial Pulse Voltammetry (DPV) techniques. The sensor showed linear range 1×10(-6) to 1×10(-12) M with lowest detection limit 1 pM which is 1000 times lower than G1PAMAM without graphene core.  相似文献   

8.
Graphene-based nanopore devices hold great promise for the next generation DNA sequencing because graphene is atomically thin which is extremely important for single base recognition. To understand the fundamental details of DNA translocation through a graphene nanopore, in this work, molecular dynamics simulations of ssDNA translocation through the nanopore were performed to trace the nucleobase trajectories and to investigate the impact of the number of layers of the graphene membrane and the electrical field on ssDNA translocation. We found that the velocity of ssDNA translocation was speeded up with the higher bias voltage, and the two-layered and five-layered graphene membrane with 1.0-nm diameter circular nanopore could discern different DNA strand by the translocation time.  相似文献   

9.
The interaction of recA protein with single-stranded (ss) phi X174 DNA has been examined by means of a nuclease protection assay. The stoichiometry of protection was found to be 1 recA monomer/approximately 4 nucleotides of ssDNA both in the absence of a nucleotide cofactor and in the presence of ATP. In contrast, in the presence of adenosine 5'-O-(thiotriphosphate) (ATP gamma S) the stoichiometry was 1 recA monomer/approximately 8 nucleotides. No protection was seen with ADP. In the absence of a nucleotide cofactor, the binding of recA protein to ssDNA was quite stable as judged by equilibration with a challenge DNA (t1/2 approximately 30 min). Addition of ATP stimulated this transfer (t1/2 approximately 3 min) as did ADP (t1/2 approximately 0.2 min). ATP gamma S greatly reduced the rate of equilibration (t1/2 greater than 12 h). Direct visualization of recA X ssDNA complexes at subsaturating recA protein concentrations using electron microscopy revealed individual ssDNA molecules partially covered with recA protein which were converted to highly condensed networks upon addition of ATP gamma S. These results have led to a general model for the interaction of recA protein with ssDNA.  相似文献   

10.
Biswas SB  Biswas-Fiss EE 《Biochemistry》2006,45(38):11505-11513
DnaB helicase is responsible for unwinding duplex DNA during chromosomal DNA replication and is an essential component of the DNA replication apparatus in Escherichia coli. We have analyzed the mechanism of binding of single-stranded DNA (ssDNA) by the DnaB x DnaC complex and DnaB helicase. Binding of ssDNA to DnaB helicase was significantly modulated by nucleotide cofactors, and the modulation was distinctly different for its complex with DnaC. DnaB helicase bound ssDNA with a high affinity [Kd = (5.09 +/- 0.32) x 10(-8) M] only in the presence of ATPgammaS, a nonhydrolyzable analogue of ATP, but not other nucleotides. The binding was sensitive to ionic strength but not to changes in temperature in the range of 30-37 degrees C. On the other hand, ssDNA binding in the presence of ADP was weaker than that observed with ATPgammaS, and the binding was insensitive to ionic strength. DnaC protein hexamerizes to form a 1:1 complex with the DnaB hexamer and loads it onto the ssDNA by forming a DnaB6 x DnaC6 dodecameric complex. Our results demonstrate that the DnaB6 x DnaC6 complex bound ssDNA with a high affinity [Kd = (6.26 +/- 0.65) x 10(-8) M] in the presence of ATP, unlike the DnaB hexamer. In the presence of ATPgammaS or ADP, binding of ssDNA by the DnaB6 x DnaC6 complex was a lower-affinity process. In summary, our results suggest that in the presence of ATP in vivo, the DnaB6 x DnaC6 complex should be more efficient in binding DNA as well as in loading DnaB onto the ssDNA than DnaB helicase itself.  相似文献   

11.
Here we report the adaptation and optimization of an efficient, accurate and inexpensive assay that employs custom-designed silicon-based optical thin-film biosensor chips to detect unique transgenes in genetically modified (GM) crops and SNP markers in model plant genomes. Briefly, aldehyde-attached sequence-specific single-stranded oligonucleotide probes are arrayed and covalently attached to a hydrazine-derivatized biosensor chip surface. Unique DNA sequences (or genes) are detected by hybridizing biotinylated PCR amplicons of the DNA sequences to probes on the chip surface. In the SNP assay, target sequences (PCR amplicons) are hybridized in the presence of a mixture of biotinylated detector probes and a thermostable DNA ligase. Only perfect matches between the probe and target sequences, but not those with even a single nucleotide mismatch, can be covalently fixed on the chip surface. In both cases, the presence of specific target sequences is signified by a color change on the chip surface (gold to blue/purple) after brief incubation with an anti-biotin IgG horseradish peroxidase (HRP) to generate a precipitable product from an HRP substrate. Highly sensitive and accurate identification of PCR targets can be completed within 30 min. This assay is extremely robust, exhibits high sensitivity and specificity, and is flexible from low to high throughput and very economical. This technology can be customized for any nucleotide sequence-based identification assay and widely applied in crop breeding, trait mapping, and other work requiring positive detection of specific nucleotide sequences.  相似文献   

12.
Nucleic acid interaction with nanoscale objects like carbon nanotubes (CNTs) and dendrimers is of fundamental interest because of their potential application in CNT separation, gene therapy and antisense therapy. Combining nucleic acids with CNTs and dendrimers also opens the door towards controllable self-assembly to generate various supra-molecular and nano-structures with desired morphologies. The interaction between these nanoscale objects also serve as a model system for studying DNA compaction, which is a fundamental process in chromatin organization. By using fully atomistic simulations, here we report various aspects of the interactions and binding modes of DNA and small interfering RNA (siRNA) with CNTs, graphene and dendrimers. Our results give a microscopic picture and mechanism of the adsorption of single- and double-strand DNA (ssDNA and dsDNA) on CNT and graphene. The nucleic acid-CNT interaction is dominated by the dispersive van der Waals (vdW) interaction. In contrast, the complexation of DNA (both ssDNA and dsDNA) and siRNA with various generations of poly-amido-amine (PAMAM) dendrimers is governed by electrostatic interactions. Our results reveal that both the DNA and siRNA form stable complex with the PAMAM dendrimer at a physiological pH when the dendrimer is positively charged due to the protonation of the primary amines. The size and binding energy of the complex increase with increase in dendrimer generation. We also give a summary of the current status in these fields and discuss future prospects.  相似文献   

13.
R H Elder  J M Rossignol 《Biochemistry》1990,29(25):6009-6017
The differential ability of mammalian DNA ligases to use oligo(dT).poly(rA) as a substrate has been used to detect, and thereby extensively purify, two immunologically distinct forms of DNA ligase from rat liver. The activity of DNA ligase I, which is unable to use this template, is uniquely increased during liver regeneration, while that of DNA ligase II remains at a low level. Both enzymes require ATP and Mg2+ for activity and form an adenylylated intermediate which is stable and reactive. After SDS-PAGE, such radiolabeled complexes correspond to polypeptides of 130,000 and 80,000 Da for DNA ligase I and to 100,000 Da for DNA ligase II. That these labeled polypeptides do indeed correspond to active polypeptides of two different forms of DNA ligase is shown by the removal of the radiolabeled AMP, only when the intermediate is incubated with an appropriate substrate. In contrast to other eukaryotic DNA ligases, rat liver DNA ligase II has a lower Km for ATP (1.2 X 10(-5) M) than DNA ligase I (6 X 10(-5) M). Also, DNA ligase II can use ATP alpha S as a cofactor in the ligation reaction much more efficiently than DNA ligase I, further discriminating the ATP binding sites of these enzymes. Finally, antibodies raised against the 130,000-Da polypeptide of DNA ligase I specifically recognize this species in an immunoblot and inhibit only the activity of DNA ligase I.  相似文献   

14.
Adenosine nucleotides affect the ability of RecA small middle dotsingle-stranded DNA (ssDNA) nucleoprotein filaments to cooperatively assume and maintain an extended structure that facilitates DNA pairing during recombination. Here we have determined that ADP and ATP/ATPgammaS affect the DNA binding and aggregation properties of the human RecA homolog human RAD51 protein (hRAD51). These studies have revealed significant differences between hRAD51 and RecA. In the presence of ATPgammaS, RecA forms a stable complex with ssDNA, while the hRAD51 ssDNA complex is destabilized. Conversely, in the presence of ADP and ATP, the RecA ssDNA complex is unstable, while the hRAD51 ssDNA complex is stabilized. We identified two hRAD51 small middle dotssDNA binding forms by gel shift analysis, which were distinct from a well defined RecA small middle dotssDNA binding form. The available evidence suggests that a low molecular weight hRAD51 small middle dotssDNA binding form (hRAD51 small middle dotssDNA(low)) correlates with active ADP and ATP processing. A high molecular weight hRAD51 small middle dotssDNA aggregate (hRAD51 small middle dotssDNA(high)) appears to correlate with a form that fails to process ADP and ATP. Our data are consistent with the notion that hRAD51 is unable to appropriately coordinate ssDNA binding with adenosine nucleotide processing. These observations suggest that other factors may assist hRAD51 in order to mirror RecA recombinational function.  相似文献   

15.
Replication factor C (RFC) catalyzes assembly of circular proliferating cell nuclear antigen clamps around primed DNA, enabling processive synthesis by DNA polymerase during DNA replication and repair. In order to perform this function efficiently, RFC must rapidly recognize primed DNA as the substrate for clamp assembly, particularly during lagging strand synthesis. Earlier reports as well as quantitative DNA binding experiments from this study indicate, however, that RFC interacts with primer-template as well as single- and double-stranded DNA (ssDNA and dsDNA, respectively) with similar high affinity (apparent K(d) approximately 10 nm). How then can RFC distinguish primed DNA sites from excess ssDNA and dsDNA at the replication fork? Further analysis reveals that despite its high affinity for various DNA structures, RFC selects primer-template DNA even in the presence of a 50-fold excess of ssDNA and dsDNA. The interaction between ssDNA or dsDNA and RFC is far less stable than between primed DNA and RFC (k(off) > 0.2 s(-1) versus 0.025 s(-1), respectively). We propose that the ability to rapidly bind and release single- and double-stranded DNA coupled with selective, stable binding to primer-template DNA allows RFC to scan DNA efficiently for primed sites where it can pause to initiate clamp assembly.  相似文献   

16.
Cheng Y  Li Z  Zhang X  Du B  Fan Y 《Analytical biochemistry》2008,378(2):123-126
We present a simple, sensitive, and cost-effective fluorescent assay of single-nucleotide polymorphism (SNP) with target-primed branched rolling circle amplification (TPBRCA). Designed padlock probe is circularized after perfect hybridization to mutant DNA. Then rolling circle amplification (RCA) reaction can be initiated from the mutant DNA that acts as primer and generates a long tandem single-stranded DNA (ssDNA) product. At the same time, the introduction of a reverse primer complementary to the target-primed RCA products leads to the branched RCA and eventually generates the various lengths of ssDNA and double-stranded DNA products, which are sensitively detected using SYBR Green I (SG) fluorescence dye. In contrast, the wild DNA contains a single mismatched base with the padlock probe and primes only a limited extension with the unligated padlock probe, generating weak background fluorescence with the addition of SG. Due to the excellent specificity and powerful amplification of TPBRCA reaction, the mutant DNA was distinctively differentiated from the wild DNA in a homogeneous and label-free manner. The assay is sensitive and specific enough to detect 5-amol (8.6-fM) mutant DNA strands. It was possible to accurately determine the mutant allele frequency as low as 1.0%.  相似文献   

17.
A high-throughput and cost-effective single-nucleotide polymorphism (SNP) genotyping method based on a gold magnetic nanoparticle (GMNP) array with dual-color hybridization has been designed. Biotinylated single-strand polymerase chain reaction (PCR) products containing the SNP locus were captured by the GMNPs that were coated with streptavidin. The GMNP array was fabricated by immobilizing single-stranded DNA (ssDNA)-GMNP complexes onto a glass slide using a magnetic field, and SNPs were identified with dual-color fluorescence hybridization. Three different SNP loci from 24 samples were genotyped successfully using this platform. This procedure allows the user to directly analyze the bead fluorescence to determine the SNP genotype, and it eliminates the need for background subtraction for signal determination. This method also bypasses tedious PCR purification and concentration procedures, and it facilitates large-scale SNP studies by using a method that is highly sensitive, simple, labor-saving, and potentially automatable.  相似文献   

18.
Reverse gyrase is a topoisomerase that introduces positive supercoils into DNA in an ATP-dependent manner. It is unique to hyperthermophilic archaea and eubacteria, and has been proposed to protect their DNA from damage at high temperatures. Cooperation between its N-terminal helicase-like and the C-terminal topoisomerase domain is required for positive supercoiling, but the precise role of the helicase-like domain is currently unknown. Here, the characterization of the isolated helicase-like domain from Thermotoga maritima reverse gyrase is presented. We show that the helicase-like domain contains all determinants for nucleotide binding and ATP hydrolysis. Its intrinsic ATP hydrolysis is significantly stimulated by ssDNA, dsDNA and plasmid DNA. During the nucleotide cycle, the helicase-like domain switches between high- and low-affinity states for dsDNA, while its affinity for ssDNA in the ATP and ADP states is similar. In the context of reverse gyrase, the differences in DNA affinities of the nucleotide states are smaller, and the DNA-stimulated ATPase activity is strongly reduced. This inhibitory effect of the topoisomerase domain decelerates the progression of reverse gyrase through the nucleotide cycle, possibly providing optimal coordination of ATP hydrolysis with the complex reaction of DNA supercoiling.  相似文献   

19.
Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM < 1 nM at 25°C under conditions where T4 DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (<100 µM) and pH >8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5′-phosphorylated dC or dG residue on the 3′ side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA.  相似文献   

20.
Single nucleotide polymorphisms (SNPs) are now widely used for many DNA analysis applications such as linkage disequilibrium mapping, pharmacogenomics and traceability. Many methods for SNP genotyping exist with diverse strategies for allele-distinction. Mass spectrometers are used most commonly in conjunction with primer extension procedures with allele-specific termination. Here we present a novel concept for allele-preparation for SNP genotyping. Primer extension is carried out with an extension primer positioned immediately upstream of the SNP that is to be genotyped, a complete set of four ribonucleotides and a ribonucleotide incorporating DNA polymerase. The allele-extension products are then treated with alkali, which results in the cleavage immediately after the first added ribonucleotide. In addition, to obtain fragments easily detectable by mass spectrometry, we have included a ribonucleotide in the primer usually at the fourth nucleotide from the 3′ terminus. The method was tested on four SNPs each with a different combination of nucleotides. The advantage over other mass spectrometry-based SNP genotyping assays is that this one only requires a PCR, a primer extension reaction with a universal extension mix and an inexpensive facile cleavage reaction, which makes it overall very cost effective and easy in handling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号