首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— By chromatography on borate-coated silicic acid, glucocerebrosides, galactocerebrosides, sulfatides and sphingomyelins from brain tissue could be efficiently separated. Adult rat brain was found to contain 54.1 ± 1.5 nmol of glucocerebrosides per gram fresh weight. Ninety percent of the glucocere-broside fatty acids were palmitate, stearate and oleate; fatty acids with chain lengths above C20 were virtually absent. No hydroxy fatty acids were found. The long chain bases of adult rat brain glucocerebrosides consisted of 74.6% C18-sphingosine, 24.4% C18-sphinganine and 1.1% C20-sphingosine. These results are compared to those obtained from glucocerebrosides from immature rat brains (Abe & Norton , 1974) and discussed in respect to changes occurring during brain development.  相似文献   

2.
—Gangliosides and allied neutral glycosylceramides were isolated from human infant (2-24 months of age) cerebral cortex and white matter. The individual glycolipids were separated quantitatively by a combination of column and thin-layer chromatographic methods on silica gel, DEAE-cellulose and Sephadex G-25. In cerebral cortex GD1a and GM1 were the major fractions and constituted more than 70 per cent of the total gangliosides. The concentrations of neutral glycolipids, except for galactosylceramides, were very low: lactosylceramide and glucosylceramide comprised 30 and 5 nmol/g wet weight, respectively. In white matter their concentrations were 10 times higher. The ganglioside concentration was only 50 per cent of that in cerebral cortex: the difference was accounted for mainly by the much lower content of the major di- and trisialogangliosides. Stearic acid was the predominant fatty acid of all brain gangliosides. GM3, and GD3 had a considerable content of the very long-chain fatty acids, C22-C24, particularly in the white matter. Glucosylceramide and lactosylceramide had almost identical fatty acid patterns between each other in cerebral cortex and white matter. In the cerebral cortex stearic acid and in the white matter the very long-chain acids predominated. d20:1 Sphingosine comprised more than 20 per cent of total sphingosine in all the gangliosides of the Gl- and G2-series. GM3, and GD3 like lactosylceramide contained significantly less of d20:1 sphingosine. The findings suggest the existence of separate compartments for the biosynthesis of the gangliosides. Glucosylceramides and lactosylceramides of white matter have the same ceramide composition as the galactosylceramides with normal fatty acids and are thus unlikely to be intermediates in the metabolism of the major brain gangliosides which have a completely different fatty acid composition.  相似文献   

3.
Abstract— Protein turnover in rat brain was measured over a period of 30 days by following the decay in specific radioactivity of acidic amino acids in proteins labelled by a single intraperitoneal injection of [14C]NaHCO3. Two major populations of brain proteins can be identified from the resultant non-linear decay curve—one with an average half-life of 4 days and another with an average half-life of 12 days. The half-lives of total brain, mitochondrial, microsomal and soluble proteins determined over a period of 5 days were 3.4, 5.8, 2.8, and 2.6 days, respectively. Turnover of these same brain subcellular fractions was also measured by continuous infusion of [14C]tyrosine. The estimated half-lives were in close agreement with those obtained from the 5 day measurement of radioactive decay following a pulse label of [14C]NaHCO3.  相似文献   

4.
Abstract— [G-3H]Lignoceric acid (tetracosanoic acid) was injected into the brains of 20-day-old rats, and the animals were killed after 8, 24, or 72 h. Various lipids were isolated from these brains, and the distribution of radioactivity was determined. The injected free acid rapidly disappeared, and the radioactivity was incorporated into varying chain-length nonhydroxy- and hydroxy saturated fatty acids of sphingolipids and phospholipids. Little radioactivity was found in unsaturated acids, sphingo-sine, and cholesterol. A time-dependent shift of the label among various fatty acids was relatively small 8 h after injection, probably because of the metabolic stability of the brain sphingolipids. In cerebrosides, the radioactivity was equally distributed between nonhydroxy and x-hydroxy fatty acids of all chain lengths. C23 and C22 fatty acids contained equal total radioactivities; C23 and C24 fatty acids contained similar specific activities. These results confirm the significant role of a-hydroxylation and 2-oxidation in the synthesis of very long-chain fatty acids in brain. In total lipid fatty acids, docosanoic acid (22:0) contained more radioactivity than its α-oxidation precursor, α-hydroxytricosanoic acid (23h:0) at all times. In sphingolipid fatty acids, the specific activity of 21:0 was always higher than that of its ct-oxidation precursor 22:0. These observations indicate that part of the 22:0 and 21:0 was derived by β-oxidation from the injected lignoceric acid or its α-oxidation product, respectively.  相似文献   

5.
Abstract— Phospholipids and sphingolipids from brains of normal and Jimpy mice were isolated in a pure form by thin-layer chromatographic procedures. The fatty acid composition of the major phospholipids, i.e. ethanolamine glycerophospholipids, serine glycerophospholipids, choline glycerophospholipids and inositol glycerophospholipids, as well as sphingomyelin, cerebrosides and sulphatides was determined by gas-liquid chromatography. A specific fatty acid pattern for each of the four glycerophospholipids was found. The fatty acid composition of inositol glycerophospholipid, which has not previously been studied in mouse brain, was characterized by a high concentration of arachidonic acid. After 16 days of age, fatty acid analysis showed definite differences between the phospholipids from normal and mutant brains. A small increase of polyunsaturated fatty acids in glycerophospholipids of ethanolamine, serine and choline from the Jimpy central nervous system was found, which has been explained by the myelin deficiency. Sphingomyelin, cerebrosides and sulphatide analyses showed a wide distribution of saturated and mono-unsaturated fatty acids in both normal and mutant mice. A reduction in the amount of long-chain fatty acids was demonstrated in mutant brain sphingolipids; in sulphatides and cerebrosides, the amount of non-hydroxy fatty acids was reduced to a greater extent than in sphingomyelin. The distribution of fatty acids in sphingolipids from the myelin and microsomal fractions was also investigated in both types of mice. Cerebrosides were characterized by a high content of long-chain fatty acids in myelin as well as in microsomes. Sulphatides and sphingomyelin, on the other hand, showed a higher content of medium-chain fatty acids in microsomes than in myelin. In the mutant brain, the amount of long-chain fatty acids was reduced in both subcellular fractions. The deviation from normal in the pattern of fatty acid distribution in Jimpy brain is discussed in relation to the current concepts of glycolipid biosynthesis.  相似文献   

6.
Folic acid-fortified foods and multi-vitamin supplements containing folic acid (FA) are widely used around the world, but the exact mechanisms/metabolic effects of FA are not precisely identified. We have demonstrated that Ceramide Synthase 6 (CerS6) and C16:0-ceramide mediate response to folate stress in cultured cells. Here we investigated the dietary FA effects on mouse liver metabolome, with a specific focus on sphingolipids, CerS6 and C16:0-ceramide.Wild-type and CerS6−/− mice were fed FA-deficient, control, or FA over-supplemented diets for 4 weeks. After dietary treatment, liver concentrations of ceramides, sphingomyelins and hexosylceramides were measured by LC-MS/MS and complemented by untargeted metabolomic characterization of mouse livers.Our study shows that alterations in dietary FA elicit multiple sphingolipid responses mediated by CerS6 in mouse livers. Folic acid-deficient diet elevated C14:0-, C18:0- and C20:0- but not C16:0-ceramide in WT male and female mice. Additionally, FA over-supplementation increased multiple sphingomyelin species, including total sphingomyelins, in both sexes. Of note, concentrations of C14:0- and C16:0-ceramides and hexosylceramides were significantly higher in female livers than in male. The latter were increased by FD diet, with no difference between sexes in total pools of these sphingolipid classes. Untargeted liver metabolomic analysis concurred with the targeted measurements and showed broad effects of dietary FA and CerS6 status on multiple lipid classes including sex-specific effects on phosphatidylethanolamines and diacylglycerols.Our study demonstrates that both dietary FA and CerS6 status exhibit pleiotropic and sex-dependent effects on liver metabolism, including hepatic sphingolipids, diacylglycerols, long chain fatty acids, and phospholipids.  相似文献   

7.
The turnover rate of tubulin in rat brain was determined from the decay in specific radioactivity of the protein after pulse-labeling. When precursors were administered by a parenteral route, the shortest half-life, 9.8 days, was obtained with [14C]NaHCO3; the longer half-lives obtained with [U-14C]glucose or [4,5-3H]leucine suggest significant reutilization of label. Furthermore, with leucine as precursor maximal specific radioactivity of tubulin was not obtained until eight days after administration of label. Labeling and decay kinetics obtained with [4,5-3H]leucine were markedly different when the isotope was administered directly into the lateral ventricle. The difference between the turnover rates of the -α and β subunits of tubulin purified by means of high resolution polyacrylamide gel electrophoresis was not statistically significant. A half-life for tubulin of 6.2 days was measured by continuous intravenous infusion of [U-14C]tyrosine.  相似文献   

8.
Summary The use of land treatment for disposal of a dilute waste oil emulsion generated by an aluminum rolling industry was investigated. Major components of the waste, identified by gas chromatography and mass spectrometry, were linear and branched (C12–C25) and fatty acid emulsifiers (primarily, isomers of oleic acid). Hexadecane and pristane were readily biodegraded in vitro when added to soil collected from the waste disposal site. Hydrocarbons and fatty acids extracted from the waste were similarly, biodegraded, however, the rate of decomposition may have depended on the history of waste applications to soil collected from the land treatment site. The apparent half-life of resolvable waste hydrocarbons and fatty acids was 9.5 days in soil which had received waste applications averaging 25.4l m–2 wk–1. In contrast, soil receiving either 50.8l m–2 wk–1 or no waste application during summer 1987 apparent exhibited half-lives of 28.1 and 60.3 days, respectively. Waste components were restricted to the upper 48 cm of the soil cores collected from the disposal site. Core samples also provided evidence for biodegradation of hydrocarbons and fatty acids as well as an accumulation of other compounds not readily resolvable by gas chromatographyPublished with the approval of the Director of the West Virginia University Agriculture and Forestry Experiment Station as Scientific Article # 2122.  相似文献   

9.
Turnover rate of individual molecular species of sphingomyelin of adult rat brain myelin and microsomal membranes was determined after an intracerebral injection of 100 Ci of [C3H3]choline. Myelin and microsomal membrane sphingomyelins were isolated from the rest of the lipids. The individual molecular species of benzoylated sphingomyelin were separated and quantitated by reversed-phase high performance liquid chromatography. All individual major molecular species of microsomal and myelin sphingomyelin had maximum incorporation at 6 and 15 days, respectively, after the injection. The specific radioactivity of all the various molecular species of both myelin and microsomal sphingomyelin declined at a similar rate after reaching a maximum. There was no significant difference in the turnover rate of short chain (16:0, 18:0) and long chain (>22:0) fatty acid containing sphingomyelin. The average apparent turnover rate of myelin and microsomal sphingomyelin molecular species was about 14–16 days for the fast pool and about 45 days for the slow pool. It is concluded that individual molecular species of sphingomyelin of myelin and microsomal membranes turned over at a similar rate. Thus, turnover rate of sphingomyelin in myelin and microsomal membranes is not affected by the fatty acyl composition of the lipid.  相似文献   

10.
Abstract— The variation with age of the fatty acid composition of the major lipids in human brain myelin was compared with that of cerebral white matter from the same region. The myelin was isolated from the semiovale centre of the cerebrum of 27 subjects neonatal to old aged. The phospholipid, cholesterol and galactolipid concentrations were determined in all the samples, as were the proportions of the major phospholipid classes. The proportions of cholesterol and especially of the galactolipids increased in myelin during the first 6 months, and in cerebral white matter up to 2 years. During this period the individual phospholipids also varied substantially. Serine phosphoglycerides and especially sphingomyelins increased, and choline phosphoglycerides decreased. The fatty acid patterns of ethanolamine phosphoglycerides (EPG) and sphingomyelins underwent the largest changes. The proportions of saturated fatty acids in EPG diminished rapidly, and there was an increase of monoenoic acids. Fatty acids of the linoleic acid series showed a peak between 4 and 12 months, after which time their proportion slowly diminished to old age. The major fatty acid of this series was docosatetraenoic acid, 22:4 (n-6), which constituted more than 25% of total fatty acids at the maximum level. The fatty acid changes were larger in cerebral white matter, but from 2 years of age the EPG fatty acid pattern in myelin was similar to that in white matter. The fatty acid changes in serine and choline phosphoglycerides of myelin with maturation were much less striking than in EPG but of a similar type. In myelin sphingomyelin the proportion of saturated long-chain fatty acids, C16-C22, diminished, while that of monoenoic acids increased and continued to do so up to old age. From 2 years of age the fatty acid patterns in myelin and cerebral white matter were quite similar. Also the fatty acid patterns of cerebrosides and sulphatides in cerebral white matter and myelin were the same except for the first 2 months of life. The same fatty acid changes occurred in cerebrosides and sulphatides as in the sphingomyelins, i.e. increased proportions of unsaturated (monoenoic) acids. The proportions of 24:1 and 24h:1 and of the odd-numbered fatty acids 25:1 and 23h:1 continued to increase to old age. The variations of the individual lipid fatty acid patterns were small except in the youngest age classes, in which the variations were presumably ascribable to the difficulty in determining the gestational age.  相似文献   

11.
The fatty acid patterns of Euonymus europaeus callus cultures and cell suspension cultures were analysed at the beginning of stationary growth phase and compared with those from the respective differentiated tissues. The lipid and fatty acid patterns in cell cultures differed remarkably from those in the tissues of the mother plant. No glycerol triacetate was detected in the callus cultures derived from differentiated tissues whereas in seeds this lipid compound amounts to 29%. In addition to fatty acids normally occurring in differentiated tissues, lipids in cultured cells also contained short-chain (C12–C14) as well as very long-chain fatty acids (C20–C24). In tissue culture cells the major fatty acids were found to be saturated, whereas in the mother cells unsaturated fatty acids were predominant. Palmitic acid is the most abundant fatty acid in most of the cultures. Lauric, myristic and palmitic acid amount to 50% in lipids of cell suspension cultures.  相似文献   

12.
The lipids from the electric organ of the ray, Torpedo marmorata, have been isolated and characterized. The major lipids were cholesterol, choline phospholipids, ethanolamine phospholipids, and sphingomyelins. The major fatty acids of ethanolamine phospholipids were 18:1, 18:0, 22:6, and 20:4. More than 50% of the acids in choline phospholipids were 16:0. The sphingomyelins consisted of five major ceramide species, all with sphingosine and the fatty acids 14:0, 15:0, 16:0, 22:1, and 24:1. The fatty acid 15:0 was mostly branched (n-2), a fatty acid earlier identified in sphingomyelins of the rectal gland of spiny dogfish. All long-chain bases were dihydroxy bases with a small percentage of branched chains. Sulfatides (cerebroside sulfate) made up the largest glycolipid fraction. The polar moiety wase galactose-3-sulfate. The fatty acids were normal and 2-hydroxy; the homologue 24:1 was the most abundant in both types of fatty acids. Most fatty acids were higher homologues of mono-unsaturated acids, but normal 18:0 fatty acid was also found. The long-chain bases were both dihydroxy and trihydroxy, with very small amounts of branched chains. The two major ceramide species of sulfatides were sphingosine combined with normal and hydroxy 24:1 fatty acids, respectively. Smaller amounts of trihydroxy base (18:0) were found linked to hydroxy 24:1 fatty acid, but not to its normal homologue. The cerebrosides contained the two major species mentioned above but lacked the trihydroxy base-hydroxy fatty acid species. The ratio of the activity of Na+-K+-dependent ATPase (EC 3.6.1.3) and the concentration of sulfatides was similar to ratios found for other tissues with normal and increased Na+ and K+ transporting capacity. The significance of this finding is discussed.  相似文献   

13.
Abstract— Purified oligodendroglia isolated from bovine brain white matter were found to contain, in addition to galactosylceramide, sulfatide and sphingomyelin, significant quantities of glucosylcerai-mide, dihexosylceramide and esterified galactosylceramide. These sphingolipids were isolated and quan-titated and their fatty acid and long chain base patterns compared with those from sphingolipids isolated from bovine myelin, white matter and gray matter.
The minor glycosphingolipids, glucosylceramide, dihexosylceramide and esterified galactosylceramide, constituted a higher percentage of glial lipids than of myelin lipids. Glucosylceramide accounted for 12% of the total glial monohexosylceramide fraction and 0.8% of total lipids; dihexosylceramide was 0.9% of total glial lipids. Both of these lipids had small quantities of α-hydroxy fatty acids. The unsubstituted fatty acids of glucosylceramide were mostly short chain (16 and 18 carbons) and were different from those of the dihexosylceramides which were a mixture of short and long chain. The hydroxy acids of each of these lipids were, however, similar and resembled those of galactosylceramide.
The fatty acid patterns of galactosylceramide, sulfatide and sphingomyelin from glial cells resembled those of the corresponding lipids from myelin and white matter. The amide-linked acids of esterified galactosylceramide contained both unsubstituted and α-hydroxy chains. Their patterns were not identical to those of galactosylceramide, but were similar in all brain fractions.
With the exception of sphingomyelin and dihexosylceramide, which contained small amounts of C20-sphingosine, all sphingolipids analyzed contained mostly sphingosine and dihydrosphingosine.
We conclude that the distribution of sphingolipids in the oligodendroglia is characteristic, but the lipophilic residues of these lipids are not cell-specific.  相似文献   

14.
—Adult rats were killed 16 h, 48 h, 6 days and 21 days after intracerebral application of n-[15,16-3H]tetracosanoic acid (lignoceric acid). After incorporation into complex lipids with a strong preference for the ester-bound fatty acids of glycerophospholipids, radioactivity decreased with time. The incorporated activity into the amide-bound fatty acids of sphingolipids was also shown to decrease, with exception of the cerebroside of the hydroxy fatty acid type (cerebron fraction). Only negligible amounts of labelled triglyceride and cholesterol ester could be detected. The fatty acids derived from the complex lipids were analysed by radio gas chromatography. It was revealed that some of the applied labelled lignoceric acid was hydroxylated and incorporated into the cerebron fraction while the rest had their chains shortened. In the latter case all even and odd numbered chain lengths down to C18 and C16 (stearic and palmitic acid) were detected. At this stage, the pool of the degradation products of lignoceric acid is stabilized by the preferred incorporation of fatty acids of these chain lengths into glycerophospholipids. A time-dependent desaturation to oleic acid from stearic acid was observed.  相似文献   

15.
The fatty acid and long-chain base composition of five major gangliosides from human stomach and small and large intestine mucosa were analyzed with gas chromatography. All the gangliosides greatly resembled each other in the fatty acid pattern. The main fatty acids were C16:0, C18:0 and C24:0. No hydroxy fatty acids could be detected. In all the gangliosides 4-sphingenine was the predominant long-chain base (70–75%). About 15% of the long-chain bases had 20 carbon atoms in their chain. No trihydroxy long-chain bases could be detected.  相似文献   

16.
Cadmium is known to harm rat testis by causing the dose-dependent apoptotic or necrotic death of seminiferous epithelium cells. Here we investigated how this affects the lipids with long-chain (C18–C22) and very-long-chain (C24–C32) polyunsaturated fatty acids (VLCPUFA) typical of spermatogenic and Sertoli cells. A severe acute inflammatory reaction resulted from the massive necrotic death of these cells two days after a single high (4 mg/kg) dose of CdCl2. This led to the conversion of most testicular glycerophospholipids to diradylglycerols (DRG) and free fatty acids (FFA) and of most sphingomyelins to ceramides (Cer). By day 30 the testis weight had decreased three-fold. The DRG and FFA had been metabolized but, unexpectedly, ceramides persisted. Also slow to disappear were VLCPUFA-containing triacylglycerols from former germ cells and ether-linked triglycerides and cholesteryl esters (CE) from former Sertoli cells. Similar results were observed 30 and 45 days after administering repeated small non pro-inflammatory CdCl2 doses (1 mg/kg). At day 30 after both treatments, an amorphous material replaced the original seminiferous tubules and the interstitium was populated by macrophages. Species of CE and ether-linked triglycerides containing fatty acids other than VLCPUFA steadily accumulated in the irreversibly damaged testis, a manifestation of the activity of these cells. The long-term permanence of original VLCPUFA-containing neutral lipids, especially ceramides, indicates that these phagocytes were slow to clear out the acellular material contained in seminiferous tubules, pointing to a form of silent chronic inflammation as an additional outcome of the multifactorial commotion caused in the testis by experimentally administered cadmium.  相似文献   

17.
Abstract— Mouse brain subcellular fractions were prepared at 1, 12, and 24 h and 3 and 8 days after intracerebral injections of [1-14C]arachidonate. Initially, radioactivity was mainly distributed in the microsomal and synaptosomal fractions, but the proportion of radioactivity in the myelin increased from 5 to 16% within 8 days. Radioactivity of the microsomal lipids started to decline at 1 h after injection, and the decay was represented by two pools with half-lives of 19 h and 10 days, respectively. Radioactivity in the synaptosomal and myelin fractions did not reach a maximum until 24 h after injections. The half-life for turnover of synaptosomal lipids was 9 days.
The decline of radioactivity measured in the microsomal fraction was due mainly to diacyl-GPC and diacyl-GPI, since radioactivity of other phosphoglycerides (diacyl-GPS, diacyl-GPE and alkenyl-acyl-GPE) continued to increase for 12-24 h. In this fraction, half-lives of 10-14 h were obtained for the fast turnover pools of diacyl-GPC and diacyl-GPI, and slow turnover pools with half-lives of 7 days for diacyl-GPI and 10-14 days for other phosphoglycerides were also present. Among the synaptosomal phosphoglycerides, radioactivity of diacyl-GPI declined in a biphasic mode, thus exhibiting half-lives of 5 h and 5 days. Incorporation of labelled arachidonate into diacyl-GPE and diacyl-GPS in the synaptosomal fractions was observed for a period of 24 h. The half-lives for these phosphoglycerides ranged from 8 to 12 days. Results of the study have demonstrated the presence of small pools of arachidonoyl-GPI in synaptosomal and microsomal fractions which were metabolically more active than other arachidonoyl containing phosphoglycerides.  相似文献   

18.
ABSTRACT. A glycosphingolipid fraction from Trypanosoma mega was isolated after acetylation and was further purified on a silicic acid column. Final purification was by preparative thin-layer chromatography. The carbohydrate components of the glycolipid were fucose and galactose in approximately equimolar amounts. The neutral glycolipid of T. mega has a sphingosine base composition that consists of sphingosine and traces of dihydrosphingosine. Fatty acids forming amide groups with the sphingosine bases were analyzed by gas-liquid chromatography-mass spectrometry and are a mixture of normal and α-hydroxy fatty acids. Normal C16:0, C18:0, and 2-hydroxy C18:0 are the predominant fatty acids.  相似文献   

19.
1. When freshly prepared explants from pseudopregnant-rabbit mammary gland were incubated with sodium [1-14C]acetate plus glucose, they synthesized triglyceride and phospholipid containing long-chain fatty acids. Explants cultured with insulin and corticosterone also synthesized these products. The addition of prolactin to this culture medium increased the rate of fatty acid synthesis up to 40-fold and the explants synthesized predominantly triglyceride enriched with C8:0 and C10:0 fatty acids characteristic of rabbit milk. 2. The maximum rates of fatty acid synthesis obtained by explants from pseudopregnant-rabbit mammary gland after culture with insulin, corticosterone and prolactin were similar to those observed with freshly prepared explants from lactating-rabbit mammary gland. The time in culture required to attain these maximum rates varied between animals, and did not appear to be connected with the time required (6–7 days) to synthesize the maximum proportions of C8:0 and C10:0 acids. 3. As the pattern of short- and medium-chain milk fatty acids is characteristic for many species, the techniques described to determine the time-course for the development of this pattern can be used to investigate hormonal response.  相似文献   

20.
Eight hours after intracerebral injection of a double-labeled 3-ketoceramide4, [1-14C]lignoceroyl 3-keto [1-3H]sphingosine, various brain sphingolipids were isolated. Free ceramide and the ceramide portions of nonhydroxy cerebroside and sphingomyelin were further fractionated into subgroups containing longer-chain or shorter-chain fatty acids. Nonhydroxy ceramide, nonhydroxy cerebroside and sphingomyelin containing longer-chain fatty acids had significant quantities of radioactivity with 3H/14C ratios similar to each other but lower than that of the injected material. The sphingolipids containing shorter-chain fatty acids were also significantly labeled; however, the 3H/14C ratios were much higher than that of the injected material. Hydroxy-ceramide and sulfatides contained very little radioactivity. However, hydroxy-cerebroside contained an amount of radioactivity comparable to that of the longer-chain nonhydroxy cerebroside with a similar 3H/14C ratio. It is proposed that the injected 3-ketoceramide was converted into ceramide, cerebroside, and sphingomyelin and that the fatty acids of these lipids were partly replaced by other fatty acids during the metabolic conversions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号