首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell proliferation of mesenchyme in the developing primary palate of the chick embryo was analyzed by tritiated thymidine autoradiography. Pulse labeling, repeated labeling, and label dilution techniques were employed to determine generation times, transit times, growth fractions, and other parameters of the cell cycle. In vivo and in vitro studies were performed to evaluate the role of tissue interactions during outgrowth of the facial primordia. These studies indicated that initially, during early stages of primary palate formation, virtually all mesenchymal cells are in the division cycle with relatively short generation times. As development proceeds, mesenchymal cell populations in the facial primordia, such as the maxillary process, retain cycle characteristics comparable to those of the progenitor cell populations. In regions adjacent to the facial primordia, such as the roof of the stomodeum, cell cycle times become more heterogeneous and result in removal of cells from rapidly cycling cell populations into subpopulations that are cycling more slowly and that, in some instances, become quiescent. Regional analysis of cell proliferation in the maxillary process indicated that growth rates of mesenchyme differ based on proximity to the overlying epithelium. Correlative in vitro studies of epithelial-mesenchymal separation and recombination experiments in organ culture revealed that the viability of mesenchyme was dependent on the presence of epithelium and that this effect was strongly stage-dependent. These and other results lead us to the conclusion that epithelial-mesenchymal interaction is significant to the maintenance of growth rates in the facial primordia and that the effects observed are mediated, at least in part, by developmental signals at the epithelial-mesenchymal interface.  相似文献   

2.
Antibodies to the myosin heavy chains of striated muscle were used to trace myogenic differentiation in the developing face and in cultures of cells from the facial primordia of chick embryos. In the intact face, myogenic cells differentiate first in the mandibular primordia and can be detected at stage 28. The early muscle blocks contain both fast and slow classes of myosin heavy chains. At stages 20 and 24, no myogenic cells are found in any of the facial primordia. However, when the cells are placed in micromass (high density) cultures, myogenic cells differentiate, revealing the presence of potentially myogenic cells in all the facial primordia. The number of myogenic cells bears no consistent relationship to the extent and pattern of chondrogenesis. Therefore the ability of the cell populations of the facial primordia to differentiate into cartilage when placed in culture is independent of the muscle cell lineage. The facial primordia represent a mixed cell population of neural crest and mesodermal cells from at least as early as stage 18.  相似文献   

3.
Retinoids produce facial defects in chicken embryos. Outgrowth of the frontonasal mass with accompanying cartilage differentiation and pattern formation is inhibited. In contrast, the development of the mandibular primordia that give rise to the lower beak proceeds normally. To investigate whether the upper beak defect is based on the inhibition of cartilage differentiation specifically in the frontonasal mass, the effects of retinoids on chondrogenesis in micromass (high density) cultures of cells from facial primordia have been studied. When either 10(-6) M retinoic acid or 10(-8) M (E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl-1- propenyl]benzoic acid (TTNPB; a stable retinoid) is added to the culture medium, cartilage differentiation is inhibited. Both frontonasal mass and mandible cultures are equally affected. The concentration of TTNPB found in both facial primordia in vivo, after a treatment that produces the defect, is also about 10(-8) M. This rules out preferential accumulation of the retinoid by the frontonasal mass as an explanation for the defect. In fact, the concentration of retinoid found in vivo, should, from the culture studies, be sufficient to markedly inhibit chondrogenesis in both the frontonasal mass and mandibles. The effects of exposure to retinoids in the intact face appear to be different to those in culture. Furthermore, when cells from retinoid-treated facial primordia are cultured in micromass, the extent and pattern of chondrogenesis in frontonasal mass cultures is identical to that of cells from untreated primordia. Cartilage differentiation in mandible cultures is slightly affected. These findings suggest that retinoids do not produce the specific facial defect by directly interfering with cartilage differentiation.  相似文献   

4.
Adenohypophysial primordia were isolated in rat fetuses from day 12.5 to day 15.5 of gestation. The organ culture employed for maintenance of the primordia was made up according to Watanabe et al. (1973). The fixation of primordia in Bouin Hollande's solution was performed after 9, 8, 7 or 6 days of culture when the normal duration of pregnancy was achieved. The cultivated primordia were immunologically studied using different antisera: anti-alpha(17-39)ACTH, anti-beta(1-24)ACTH, anti-beta-LPH, anti-alpha and anti-beta-endorphins, with immunoperoxidase or immunofluorescence techniques, including control experiments of the specificity of the antisera. A similar study was performed on pituitaries removed from normal rat fetuses from day 16.5 of gestation and each day up to birth, and fixated immediately. In vivo the first cells reacting with all the antisera used in this study were observed on day 16.5 of gestation; their number increased during gestation (Fig. 1 A, B and C). Immunoreactive cells with the different antisera could be detected in primordia isolated on day 12.5 of gestation after 9 days of culture. Numerous groups of cells were observed in primordia of older fetuses (Fig. 2 A and B). These data indicate that the corticotropic cells in rat fetuses could start to be differentiated without stimuli from the hypothalamus since primordia were isolated before the appearance of this cell type in normal rat fetuses and before the differentiation of the hypothalamus. The presence of ACTH and other peptides such as beta-LPH or beta-endorphin would support the hypothesis of a common precursor in this cell type existing early in gestation. Similar results were obtained in human fetuses.  相似文献   

5.
The mushroom (Agaricus bisporus) has a requirement for a "casing layer" that has specific physical, chemical and microbiological properties which stimulate and promote the initiation of primordia. Some of these primordia then may develop further into sporophores, involving differentiation of tissue. Wild and commercial strains of A. bisporus were cultured in axenic and nonaxenic microcosms, using a rye grain substrate covered by a range of organic and inorganic casing materials. In axenic culture, A. bisporus (commercial strain A15) was capable of producing primordia and mature sporophores on charcoal (wood and activated), anthracite coal, lignite and zeolite, but not on bark, coir, peat, rockwool, silica or vermiculite. Of six strains tested, only the developmental variant mutant, B430, produced rudimentary primordia on axenic peat-based casing material. However, none of these rudimentary primordia developed differentiated tissues or beyond 4 mm diameter, either on axenic casing material in the microcosms or in larger-scale culture. In larger-scale, nonaxenic culture, strain B430 produced severely malformed but mature sporophores in similar numbers to those of other strains. Typically, 3-6% of primordia developed into mature sporophores, but significant differences in this proportion, as well as in the numbers of primordia produced, were recorded between 12 A. bisporus strains.  相似文献   

6.
A technique of microinjection of small quantities of teratogens into extraembryonic compartments or specific organ primordium of rat conceptuses of pregnancy day 11 is described. Conceptuses microinjected with 50 nl tissue culture medium developed normally for 44-45 hr when cultured in homologous rat serum, indicating that the microinjection procedure itself did not produce any deleterious effects on growth and differentiation of embryos. Microinjection of an alkylating agent, phosphoramide mustard dissolved in tissue culture medium, into the exocoelom produced anomalous embryogenesis, consisting of retarded embryonic growth, anomalies of the neural tube, and general necrosis of various organ primordia. In contrast, the embryonic development remained relatively unaffected by microinjection of identical amounts of this alkylating agent into the amniotic cavity. However, neural-tube differentiation was markedly affected when phosphoramide mustard was injected into anterior neural-tube fluid, producing anencephalic or microcephalic embryos without significant effect on postcephalic organ differentiation. The morphogenesis of the anterior limb was unaffected by local injection of the agent into somitic tissues adjacent to the presumptive limb-bud region. Therefore, it appears that differential dysmorphogenesis could be induced by microinjection of an alkylating agent into different conceptus compartments. These results indicate that even during early embryogenesis various cell types are not equally susceptible to a given teratogen, and that the differential cytotoxicity of the teratogen toward specific embryonic or extraembryonic cells and tissues may account for embryonic anomalies characteristically produced by that agent.  相似文献   

7.
Differential growth of the three major facial primordia, the frontonasal mass, maxilla and mandible, results in a characteristic face shape. Abnormal growth of any of the primordia can lead to facial defects. In order to dissect out the factors that control growth, we developed a functional assay for cell proliferation using micromass culture and defined medium. Cell number was determined over a 4 day period and BrdU incorporation was used to determine the percentage of cells in S-phase. In defined medium, cell number progressively decreases and proliferation is very reduced in cultures of cells from all three primordia. When foetal calf serum was added, frontonasal mass cell number triples, mandible doubles and maxilla increases by half. The number of cells in S-phase increased in every case but the final cell number reflects a balance between proliferation and cell loss from the culture. The addition of basic fibroblast growth factor (bFGF) to defined medium leads to an increase in cell number in the frontonasal mass, while the cell number of mandibular and maxillary cultures is relatively unaffected. The percentage of cells in S-phase is highest in frontonasal mass cultures. Serum and bFGF both increase chondrogenesis in frontonasal mass cultures when compared to defined medium. In contrast in mandibular cultures, serum does not change the amount of cartilage and with bFGF chondrogenesis is reduced. The coordination of the changes in proliferation and differentiation in frontonasal mass cultures suggest that either these two processes are independently stimulated to the same extent or a single subpopulation of cells is stimulated to divide and differentiate into chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Summary The face develops from small buds of tissue positioned around the primitive mouth. The chondrogenic and myogenic cell populations contained within these facial primordia in mouse embryos have been investigated in short-term micromass culture. Chondrogenesis occurred in frontonasal mass mesenchyme from E11-E13 embryos, in maxillary mesenchyme from E12.5 embryos and was absent in mandibular mesenchyme. Myogenesis was greatest in mandibular mesenchyme, moderate in maxillary mesenchyme and low in the frontonasal mass. When compared with chick embryos the mouse facial primordia have lower chondrogenic potential, which in the case of the frontonasal mass may be related to the relative outgrowth of the primordia in the two species. Chondrogenesis in the mouse mandibular mesenchyme may be affected by the presence of a large population of odontogenic mesenchyme. The behavior of myogenic cell populations is related to the pattern of the musculature of the face, as the mandible contains the most muscle, the maxilla some, and the frontonasal mass none. However, the presence of myoblasts in early mesenchyme of all primordia may indicate that, as with chick, facial primordia are initially seeded with muscle cells and that the size of the cell population is subsequently controlled according to the development of the musculature within the primordia.  相似文献   

9.
10.
11.
12.
The facial primordia in the chick embryo begin as rounded swellings that surround the primitive mouth and these grow out to form the beak. The control of proximodistal outgrowth is not well understood but may involve similar mechanisms to the limb bud. In order to test this hypothesis, combinations were made between epithelium and mesenchyme from facial primordia and limb buds. Signals from all three types of facial mesenchyme (frontonasal mass, mandibular, and maxillary) maintained the thickened apical ectodermal ridge of limb epithelium for up to 48 h. Combinations of tissues from the frontonasal mass mesenchyme and limb epithelium underwent substantial and correct morphogenesis. In contrast, poor development was observed in combinations with mandibular mesenchyme. Signals from frontonasal mass epithelium promoted outgrowth and morphogenesis of limb mesenchyme whereas mandibular and maxillary epithelium did not support joint morphogenesis. The results suggest that signals employed in the epithelial-mesenchymal interactions in facial primordia are similar but not identical to those signals used in the limb bud.  相似文献   

13.
In contrast to animals, organogenesis in plants is continuous, allowing development in response to intrinsic and extrinsic signals. Organs arise from primordia formed on the flanks of meristems. The apical meristem produces primordia that acquire leaf identity, while floral meristems form primordia which develop into four organ types: sepals, petals, stamens and carpels. The production of mature organs involves two distinct processes, the initiation of organ primordia and the establishment of meristem, primordia and cell identities. Here we concentrate on floral organogenesis in Arabidopsis and examine the extent to which these processes utilize similar control mechanisms and regulatory molecules.  相似文献   

14.
Amphibian embryos are an excellent model system for analyzing the mechanisms of vertebrate cardiogenesis. Studies of heart development in Xenopus have, for example, revealed that the inductive interaction of the heart primordia with the adjacent underlying endoderm and dorsal lip starts at the early stages of gastrulation. However, the molecular basis of those early inductive events and the genes expressed during the early phases of heart differentiation remain largely unknown. Amphibian blastula embryos contain pluripotent cells in their ectodermal region, called the "animal cap," which fortunately can be exploited for understanding a variety of organogenesis processes. Despite an enormous potential for analysis, the use of this system in cardiogenesis research has languished due to a lack of information concerning appropriate culture methods. Herein we report conditions for generating an in vitro heart induction system and present evidence from two types of in vivo transplantations, that the cultured heart rudiment can develop and function in the adult organism. It is expected that the fundamental principles established in this model system will provide a versatile research platform for a variety of organ engineering projects, including modifying in vitro organ growth with exogenous components (e.g. various growth factors) and developing methods for preparing tissue for transplantation.  相似文献   

15.
Floral organogenesis and development of the bushy perennial legume Astragalus caspicus were studied using epi-illumination light microscopy techniques. Based on our observations, flowers are in axillary two-flowered racemes, initiate all 21 floral organs and show precocious appearance of zygomorphy. The order of floral organ initiation is unidirectional in whorls starting from the abaxial position of the flower with a high degree of overlap. Another important ontogenetic feature is the existence of two successive common primordial stages categorized as primary and secondary. The primary common primordia produce antesepalous stamens and secondary common primordia. In contrast, the five secondary common primordia subdivide into a petal and an antepetalous stamen primordia. Our findings on floral ontogeny of A. caspicus provide new evidence for the complex and variable floral initiation and development in legumes. The floral apex with strong overlapping initiation of different organs illustrates a paradox in which different capabilities must be presumed to exist simultaneously. Moreover, two extraordinary types of common primordia represent possibly an advanced evolutionary trend where time intervals between the initiations of different floral organs in Papilionoideae are shortened.  相似文献   

16.
Sex Determination by Sex Chromosomes in Dioecious Plants   总被引:5,自引:0,他引:5  
Abstract: Sex chromosomes have been reported in several dioecious plants. The most general system of sex determination with sex chromosomes is the XY system, in which males are the heterogametic sex and females are homogametic. Genetic systems in sex determination are divided into two classes including an X chromosome counting system and an active Y chromosome system. Dioecious plants have unisexual flowers, which have stamens or pistils. The development of unisexual flowers is caused by the suppression of opposite sex primordia. The expression of floral organ identity genes is different between male and female flower primordia. However, these floral organ identity genes show no evidence of sex chromosome linkage. The Y chromosome of Rumex acetosa contains Y chromosome-specific repetitive sequences, whereas the Y chromosome of Silene latifolia has not accumulated chromosome-specific repetitive sequences. The different degree of Y chromosome degeneration may reflect on evolutionary time since the origination of dioecy. The Y chromosome of S. latifolia functions in suppression of female development and initiation and completion of anther development. Analyses of mutants suggested that female suppressor and stamen promoter genes are localized on the Y chromosome. Recently, some sex chromosome-linked genes were isolated from flower buds of S. latifolia.  相似文献   

17.
利用扫描电镜研究了茄科 (Solanaceae)天仙子族 (Hyoscyameae)中国特有属马尿泡属 (PrzewalskiaMaxim .)马尿泡 (PrzewalskiatanguticaMaxim .)和天仙子属 (HyoscyamusL .)天仙子 (HyoscyamusnigerL .)的花器官发生和发育 ,研究结果表明 :马尿泡和天仙子花器官的发生和发育具有以下 3个共同特征 :1)符合Hofmeister规律 ,即新器官的发生首先出现在花顶已经存在的器官之间 ;2 )花冠的发育模式符合茄科植物所具有的“后合瓣”(“latesympetaly”)现象 ,即花瓣单独发生但后来又通过它们基部分生组织的融合而连合起来 ;3)花被五基数且花器官原基发生顺序为向心发育。但是它们的花萼原基具有不同的发生方式。天仙子花萼裂片原基的发生方式为环状发生 ;马尿泡花萼裂片原基的发生方式为螺旋状发生 ,但 5个花萼裂片原基在都出现后就连成了一个环。马尿泡是介于天仙子属和山莨菪属之间的类群 ,它比天仙子属原始但较山莨菪属进化。  相似文献   

18.
Investigating organogenesis in utero is a technically challenging process in placental mammals due to inaccessibility of reagents to embryos that develop within the uterus. A newly developed ex vivo upright droplet culture method provides an attractive alternative to studies performed in utero. The ex vivo droplet culture provides the ability to examine and manipulate cellular interactions and diverse signaling pathways through use of various blocking and activating compounds; additionally, the effects of various pharmacological reagents on the development of specific organs can be studied without unwanted side effects of systemic drug delivery in utero. As compared to other in vitro systems, the droplet culture not only allows for the ability to study three-dimensional morphogenesis and cell-cell interactions, which cannot be reproduced in mammalian cell lines, but also requires significantly less reagents than other ex vivo and in vitro protocols. This paper demonstrates proper mouse fetal organ dissection and upright droplet culture techniques, followed by whole organ immunofluorescence to demonstrate the effectiveness of the method. The ex vivo droplet culture method allows the formation of organ architecture comparable to what is observed in vivo and can be utilized to study otherwise difficult-to-study processes due to embryonic lethality in in vivo models. As a model application system, a small-molecule inhibitor will be utilized to probe the role of vascularization in testicular morphogenesis. This ex vivo droplet culture method is expandable to other fetal organ systems, such as lung and potentially others, although each organ must be extensively studied to determine any organ-specific modifications to the protocol. This organ culture system provides flexibility in experimentation with fetal organs, and results obtained using this technique will help researchers gain insights into fetal development.  相似文献   

19.
During embryonic tooth formation, interactions between epithelial and mesenchymal cells results in the formation of a metachromatic interface or extracellular matrix. The cervical or germinative region of this epidermal organ system is populated by an increasing gradient of cellular differentiation and an extracellular matrix which is the progenitor for subsequent dentine organic matrix formation. Embryonic rabbit tooth primordia can be maintained in culture enabling kinetic studies of labeled precursor incorporation. Autoradiographs of tooth organ cultures continusly incubated with labeled uridine for periods up to eight hours, demonstrated initial cellular incorporation with subsequent transfer of 2% of the grain density to the extracellular matrix by four hours. The grain density was removed by ribonuclease treatment. No incorporation of tritiated thymidine into the matrix was observed. The incorporation of C14-uridine during organ culture was inhibited by actinomycin D. Micrurgy was employed to isolate the extracellular matrix free of adherent cells. Electron microscopy demonstrated membrane-bound, electron dense bodies within the matrix, presumably cytoplasmic extensions. No cells per se were observed on the isolated matrix. Several experimental criteria suggested that uridine incorporation into the extracellular matrix was regulated by epithelial and mesenchymal cells. Phenol extraction procedures of labeled cervical matrices demonstrated an ultraviolet absorption maximum at 260 μU. Both spectrophotometric determinations and orcinol assays found RNA to be 0.4–0.5% of the cervical extracellular matrix. These results are interpreted to indicate that RNA is a component of the metachromatic extracellular matrix during epithelio-mensenchymal interactions associated with tooth formation. The functional significance of these observations is premature at this time.  相似文献   

20.
Recent studies have shown that molecular control of inner floral organ identity appears to be largely conserved between monocots and dicots, but little is known regarding the molecular mechanism underlying development of the monocot outer floral organ, a unique floral structure in grasses. In this study, we report the cloning of the rice EXTRA GLUME1 ( EG1 ) gene, a putative lipase gene that specifies empty-glume fate and floral meristem determinacy. In addition to affecting the identity and number of empty glumes, mutations in EG1 caused ectopic floral organs to be formed at each organ whorl or in extra ectopic whorls. Iterative glume-like structures or new floral organ primordia were formed in the presumptive region of the carpel, resulting in an indeterminate floral meristem. EG1 is expressed strongly in inflorescence primordia and weakly in developing floral primordia. We also found that the floral meristem and organ identity gene OsLHS1 showed altered expression with respect to both pattern and levels in the eg1 mutant, and is probably responsible for the pleiotropic floral defects in eg1 . As a putative class III lipase that functionally differs from any known plant lipase, EG1 reveals a novel pathway that regulates rice empty-glume fate and spikelet development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号