首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Calcium ions play an important role in the regulation of stomatal movement and the mechanism underlying this action is yet to be determined. It is suggested that guard cell plasma membrane ATPase is a target for calcium action and that this effect is mediated by calmodulin. In this study, the effects of calcium and two calmodulin antagonists on ATPase activity in a crude homogenate of Commelina communis L. guard cell protoplasts were examined. The homogenate contained Mg2+-dependent, K+-simulated ATPase activity, which was inhibited by CaCl2 while stimulated by the calmodulin antagonists, compound 48/80 and chlorpromazine. The calmodulin antagonists partially reversed the inhibitory effect of calcium ions. The results support the possibility of calmodulin involvement in the regulation of guard cell ATPase activity by calcium ions.  相似文献   

3.
Electron-dense deposits representing calcium oxalate crystals which result from ATP-dependent calcium uptake have been localized within vesicles of of a heavy microsomal fraction prepared from mouse pancreatic acini. In the absence of either ATP or oxalate, no electron-dense deposits could be observed. By subfractionation of microsomes on discontinuous sucrose gradients, it could be shown that the highest energy-dependent calcium transport activity was associated with the rough endoplasmic reticulum. In rough microsomes, the 45Ca2+-uptake measured was 7 times greater than that of smooth microsomes in the presence of ATP and oxalate and about 3 times greater in he presence of ATP alone. When ribosomes were released from the rough endoplasmic reticulum vesicles by treatment with KCl in the presence of puromycin, the stripped microsomes showed a 40% increase in the specific 45Ca2+-uptake activity measured in he presence of ATP and oxalate and an increase of 80 to 90% in the presence of ATP alone. From these results it can be concluded that the calcium transport activity of microsomes prepared from mouse pancreatic acini is located predominantly in the rough endoplasmic reticulum membrane.  相似文献   

4.
5.
Physiological and experimental regulation of taurine content in the heart   总被引:3,自引:0,他引:3  
High concentrations of taurine are found in the heart and these are increased still further in congestive heart failure. It appears that taurine is largely derived by influx from the circulation, and this influx is stimulated by cyclic AMP, whereas influx of alpha-amino acids is unaffected. Influx occurs via a saturable transport system that has strict requirements for ligands. Other substances are transported by this system, including beta-alanine, hypotaurine, guanidoethyl sulfonate, and, to a lesser extent, guanidinopropionate; and these are competitive antagonists for taurine transport. Guanidinoethyl sulfonate, in vivo, markedly lowers taurine concentrations over the course of a few days in all tissues examined in the rat and mouse (but not in the guinea pig). The concentrations of other amino acids are unaffected. Guanidinoethyl sulfonate may prove to be a useful substance in the study of the biological role of taurine, in view of its ability to regulate taurine content in a number of species. Despite the numerous pharmacological actions of taurine, its physiological function in the heart remains problematic. One function appears to be the modulation of calcium movements. The inotropic actions of taurine and beta-adrenergic activation may be linked via the cyclic AMP-dependent regulation of taurine influx.  相似文献   

6.
7.
Rabbit brain actomyosin showed several fold stimulation of the MgATPase activity by Ca2+ alone and by Ca2+/calmodulin. The calmodulin-binding drug, fluphenazine, abolished the stimulated activity. In the presence of Ca2+, exogenous calmodulin had a biphasic effect on ATPase activity at low concentrations (less than 0.15 microM) and activated the ATPase activity by 60-70% at about 1 microM. Tropomyosin-troponin complex from skeletal muscle did not stimulate the ATPase activity of brain actomyosin, but conferred Ca2+ sensitivity to a skeletal muscle myosin/brain actomyosin mixture. These results indicate the presence of myosin-linked, calmodulin-dependent, Ca2+-regulatory system for brain actomyosin. Heavy and light chains of brain myosin were found to be rapidly phosphorylated by endogenous Ca2+-dependent protein kinase(s). Ca2+-independent phosphorylation of one of the light chains was also observed.  相似文献   

8.
9.
The effect of Eleutherococcus on subcellular heart organization in rats with or without myocardial infarction was investigated. It was found that Eleutherococcus decreases ultrastructural lesions in the ischemic area, intensifies regeneration of subcellular structures and accelerates the recovery after myocardial infarction. The accumulation of glycogen, lipids and lysosomes is observed in lipocytes. It is suggested that positive effect of Eleutherococcus during myocardial infarction is related to lipid transformation into glycogen.  相似文献   

10.
The study was conducted on human leukemia (K 562) cells to characterize the mechanisms implicated in the regulation of the polyamine spermicine (Spd) transport process. The antagonists of calmodulin, trifluoperazine (TFP), W-7 (N-[6-aminohexyl]-5-chloro-1-naphthelenesulfonamide), or mellitin inhiblted significantly polyamine Spd uptake in these cells. The translocation of calmodulin towards plasma membrane and a concomitant decrease in its contents in cytosol were directly correlated with the time course increases similar to that of Spd uptake, indicating that calmodulin is recruited towards plasma membrane during the Spd transport process. Diminution of free intracellular calcium, (Ca2+)i, by preincubating the cells in BAPTA (bis[2-amino-5-methylphenoxyl]-ethane-N,N′,N′,-tetraacetate) buffer inhibited Spd transport significantly. Addition of lanthanum (LAN), a molecule known to inhibit Ca2 efflux via Ca2+-ATPase, curtailed Spd uptake by these cells. LAN inhibited Vmax, but not the Km, of Spd uptake, indicating that the former does not directly interact with the polyamine transporter; rather it regulates the transport process, probably via its action on Ca2+-ATPase. Calmodulin-stimulated uptake of 45Ca2+ by inside-out vesicles of K 562 cells, a measure of Ca2+-ATPase activity. Furthermore, addition of LAN inhibited both basal and calmodulin-stimulated activity of Ca2+-ATPase. Thapsigargin (THAP), a molecule known to elevate (Ca2+) i due to its action on the endoplasmic reticulum, increased Spd transport whereas addition of LAN inhibited THAP-stimulated Spd transport activity. THAP increased free (Ca2+)i in these cells, and a pre-addition of LAN to these cells curtailed the THAP-stimulated increases of (Ca2+)i concentrations. Addition of Spd brought about elevations in (Ca2+)i contents. Caffeine also increased (Ca2+)i in these cells; however, it failed to stimulate significantly the Spd uptake process, indicating that (Ca2+)i which is involved in the regulation of polyamine transport pathways does not belong to the calcium-induced calcium-release (CICR) pool. Replacement of Ca2+ from the incubation medium (i.e., 0% Ca2+) resulted in higher uptake activity as compared to that in 100% Ca2+ medium, demonstrating that in 100% Ca2+ medium the calcium efflux process is quickly compensated by calcium refilling/influx from the extracellular medium, while in 0% Ca2+ medium there is perpetual efflux of (Ca2+)i which contributes to higher Spd uptake process. The results of this study suggest that an increase in free (Ca2+)i and its release from the cells via Ca2+ ATPase, and concomitant activation of calmodulin, which controls Ca2+-pump activity, are involved in the regulation of the Spd uptake process in human leukemia cells. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Preliminary adaptation to short-term stress was shown to prevent the decrease in the heart fibrillation threshold and an increase in ectopic activity which is usually observed in experimental myocardial infarction. This protective effect involves an enhanced activity of the antioxidant system. Therefore, a synthetic antioxidant ionol was applied to prevent disturbances of the heart electrical stability in infarction. It was established that ionol completely prevents the decrease in the electrical threshold and the increase in ectopic activity of the heart in experimental infarction. Thus, it can be concluded that ionol possesses an antiarrhythmic effect.  相似文献   

12.
In 60 rabbits with experimental myocardial infarction induces by ligation of the anterior branch of the left coronary artery, DNA synthesis was studied by means of H3-thymidine in muscular and connective tissue cells depending on the period of myocardial infarction. The development of myocardial infarction in the cardiac muscle was stated to be accompanied by activation of DNA synthesis in the connective tissue cells not only in the necrotic zone but in the adjacent, as well as in distant areas of the myocardium and in stromal cells of the auriculum. Indices of H3-thymidine labeled nuclei were of high value during the acute period of myocardial infarction and gradually decreased with the time elapsed since the operation. During the period of the myocardical infarction organization high activity in DNA synthesis was revealed in connective tissue elements of the epicardium and the subepicardial zone of the heart. Myocardial cells of the cardiac auriculi incorporated H3-thymidine but extremely seldom-single labels per thousands of nuclei. In the auriculi with application of prolonged sessions of the labeled precussor introduction, DNA synthesising nuclei were revealed, sometimes with paired nuclei of cardiomyocytes.  相似文献   

13.
14.
Polypeptides excreted from the heart have been shown to exert a positive influence on myocardial infarction caused by izadrin injection in experimental rats.  相似文献   

15.
Calcium activates the ATPase activity of tissue-purified myosin V, but not that of shorter expressed constructs. Here, we resolve this discrepancy by comparing an expressed full-length myosin V (dFull) to three shorter constructs. Only dFull has low ATPase activity in EGTA, and significantly higher activity in calcium. Based on hydrodynamic data and electron microscopic images, the inhibited state is due to a compact conformation that is possible only with the whole molecule. The paradoxical finding that dFull moved actin in EGTA suggests that binding of the molecule to the substratum turns it on, perhaps mimicking cargo activation. Calcium slows, but does not stop the rate of actin movement if excess calmodulin (CaM) is present. Without excess CaM, calcium binding to the high affinity sites dissociates CaM and stops motility. We propose that a folded-to-extended conformational change that is controlled by calcium and CaM, and probably by cargo binding itself, regulates myosin V's ability to transport cargo in the cell.  相似文献   

16.
The effect of left ventricular experimental infarction (caused by left coronary artery ligation) on the isolated right atrium contractile function and acetylcholine content in both atria was studied in male Wistar rats. It was shown that a 24-hour infarction induced an increase in atrial chronotropic response to acetylcholine, which proved an increase in the pacemaker cholinoreactivity. Atrial inotropic response to acetylcholine characterizing the contractile myocardium cholinoreactivity remained unchanged. At the same time atrial endogenous acetylcholine content decreased fourfold. An increase in pacemaker cholinoreactivity was not accompanied by changes in its adrenoreactivity; those changes increased the pacemaker sensitivity to cholinergic influences which could help elucidate the ectopic excitation foci, thus promoting the onset of arrhythmia.  相似文献   

17.
18.
19.
A severalfold activation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity by micromolar concentrations of calmodulin was observed in sarcoplasmic reticulum vesicles obtained from canine ventricles. This activation was seen in the presence of 120 mM KCl. The ratio of moles of calcium transported per mol of ATP hydrolyzed remained at about 0.75 when calcium transport and (Ca2+ + Mg2+)-activated ATPase activity were measured in the presence and absence of calmodulin. Thus, the efficiency of the calcium transport process did not change. Stimulation of calcium transport by calmodulin involves the phosphorylation of one or more proteins. The major 32P-labeled protein, as determined by sodium dodecyl sulfate slab gel electrophoresis, was the 22,000-dalton protein called phospholamban. The Ca2+ concentration dependency of calmodulin-stimulated microsomal phosphorylation corresponded to that of calmodulin-stimulated (Ca2+ + Mg2+)-activated ATPase activity. Proteins of 11,000 and 6,000 daltons and other proteins were labeled to a lesser extent. A similar phosphorylation pattern was obtained when microsomes were incubated with cAMP-dependent protein kinase and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Phosphorylation produced by added cAMP-dependent protein kinase and calmodulin was additive. These studies provided further evidence for Ca2+-dependent regulation of calcium transport by calmodulin in sarcoplasmic reticulum that could play a role in the beat-to-beat regulation of cardiac relaxation in the intact heart.  相似文献   

20.
Ultrasonic effects (0.88 MHz, 0.8 Wt X cm-2) on Na+, K+-ATPase and Mg2+-ATPase changed the values KM, Vmax, delta H not equal to, delta S not equal to and the activation energy, which can point to some changes in the structure of lipoprotein enzyme complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号