首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protease inhibitors mediate a natural form of plant defence against insects, by interfering with the digestive system of the insect. In this paper, affinity chromatography was used to isolate trypsins and chymotrypsins from Helicoverpa zea larvae, which had been raised on inhibitor-containing diet. Sensitivity of the fractions to inhibition by plant proteinase inhibitors was tested, and compared to the sensitivity of proteinases found in insects raised on diet to which no inhibitor had been added. The isolated chymotrypsin activity was found to be less sensitive to plant protease inhibitors. The sensitivity of the isolated trypsin activity was found to be intermediate between completely sensitive trypsins and completely insensitive forms that have been previously described. Mass spectrometry was used to identify one trypsin and two chymotrypsins in the partially purified protease fraction. The sequence features of these proteases are discussed in relation to their sensitivity to inhibitors. The results provide insight in the enzymes deployed by Helicoverpa larvae to overcome plant defence.  相似文献   

2.
Alkaline trypsin protein of molecular mass 25,436 Da purified from the digestive juice of Bombyx mori larvae indicated strong antiviral activity against Bombyx mori nucleopolyhedrovirus (BmNPV) under in vitro conditions. Partial N-terminal amino acid sequence of the protein was determined and the cDNA was cloned based on the amino acid sequence. A homology search of the deduced amino acid sequence of the cDNA showed 55% identity with Helicoverpa armigera trypsin and the active site of this protein was completely conserved. Hence, the protein was designated B. mori trypsin (Bmtryp). The results suggest that Bmtryp, an insect digestive enzyme, can be a potential antiviral factor against BmNPV at the initial site of viral infection.  相似文献   

3.
The major inhibitor of trypsin in seeds of Prosopsis juliflora was purified by precipitation with ammonium sulphate, ion-exchange column chromatography on DEAE- and CM-Sepharose and preparative reverse phase HPLC on a Vydac C-18 column. The protein inhibited trypsin in the stoichiometric ratio of 1:1, but had only weak activity against chymotrypsin and did not inhibit human salivary or porcine pancreatic alpha-amylases. SDS-PAGE indicated that the inhibitor has a Mr of ca 20,000, and IEF-PAGE showed that the pI is 8.8. The complete amino acid sequence was determined by automatic degradation, and by DABITC/PITC microsequence analysis of peptides obtained from enzyme digestions of the reduced and S-carboxymethylated protein with trypsin, chymotrypsin, elastase, the Glu-specific protease from S. aureus and the Lys-specific protease from Lysobacter enzymogenes. The inhibitor consisted of two polypeptide chains, of 137 residues (alpha chain) and 38 residues (beta chain) linked together by a single disulphide bond. The amino acid sequence of the protein exhibited homology with a number of Kunitz proteinase inhibitors from other legume seeds, the bifunctional subtilisin/alpha-amylase inhibitors from cereals and the taste-modifying protein miraculin.  相似文献   

4.
A trypsin-chymotrypsin inhibitor was isolated from the seeds of amaranth—a highly nutritious protein source. The purification of the inhibitor (AmI) was carried out by affinity chromatography on trypsin-Sepharose and by HPLC. AmI is a single-chain protein of 8 kD, as determined by electrophoresis on SDS-polyacrylamide gels and by gel exclusion on Sephadex G-50 column. It is stable at neutral and alkalinepH and is relatively thermostable. AmI inhibits trypsin and chymotrypsin from the digestive system of insects such asTribolium castaneum andLocusta migratoria, supporting the hypothesis that inhibitors may have evolved as defense mechanisms of seeds against insects. AmI lost its inhibitory activities when submitted to limited proteolysis with trypsin, while limited proteolysis with chymotrypsin had almost no effect. The partial amino acid sequence of 45 amino acids from the amino terminus of AmI differs significantly from the known sequences of legume-seed and cereal-grain protease inhibitor families. Differences in the chemistry at the inhibitory site(s) and in the amino acid sequence of AmI in comparison to that of other cereal and legume inhibitors suggest that AmI is a member of a new family of serine protease inhibitors. AmI was found to inhibit the anchorage-independent growth of MCF-7 breast cancer cells, suggesting that AmI may have anticarcinogenic activity.  相似文献   

5.
Strong fibrinolytic enzyme was purified from the lysate of Katsuwonus pelamis digestive tract (Japanese traditional fermented food, “shiokara”). The enzyme was an alkaline trypsin-like serine protease, and a pH- and salt-resistant protein. The N-terminal amino acid sequence of the enzyme showed similarity with those of trypsin from other organisms. The molecular weight and isoelectric point of the enzyme were estimated to be 38,000 and 4.65, respectively. The enzyme is probably useful as a thrombolytic agent.  相似文献   

6.
A low molecular weight protein protease inhibitor was purified from Japanese horseshoe crab (Tachypleus tridentatus) hemocytes. It consisted of a single polypeptide with a total of 61 amino acid residues. This protease inhibitor inhibited stoichiometrically the amidase activity of trypsin (Ki = 4.60 X 10(-10) M), and also had inhibitory effects on alpha-chymotrypsin (Ki = 5.54 X 10(-9) M), elastase (Ki = 7.20 X 10(-8) M), plasmin, and plasma kallikrein. However, it had no effect on T. tridentatus clotting enzyme and factor C, mammalian blood coagulation factors (activated protein C, factor Xa and alpha-thrombin), papain, and thermolysin. The complete amino acid sequence of this inhibitor was determined and its sequence was compared with those of bovine pancreatic trypsin inhibitor (BPTI) and other Kunitz-type inhibitors. It was found that the amino acid sequence of this inhibitor has a high homology of 47 and 43% with those of sea anemone inhibitor 5-II and BPTI, respectively. Thus, this protease inhibitor appeared to be one of the typical Kunitz-type protease inhibitors.  相似文献   

7.
Abstract  Bitter gourd ( Momordica charantia L.) seeds contain several squash-type serine proteinase inhibitors (PIs), which inhibit the digestive proteinases of the polyphagous insect pest Helicoverpa armigera . In the present work isolation of a DNA sequence encoding the mature peptide of a trypsin inhibitor McTI-II, its cloning and expression as a recombinant protein using Pichia pastoris have been reported. Recombinant McTI-II inhibited bovine trypsin at 1: 1 molar ratio, as expected, but did not inhibit chymotrypsin or elastase. McTI-II also strongly inhibited trypsin-like proteinases (81% inhibition) as well as the total proteolytic activity of digestive proteinases (70% inhibition) from the midgut of H. armigera larvae. The insect larvae fed with McTI-II-incorporated artificial diet suffered over 70% reduction in the average larval weight after 12 days of feeding. Moreover, ingestion of McTI-II resulted in 23% mortality in the larval population. The strong antimetabolic activity of McTI-II toward H. armigera indicates its probable use in developing insect tolerance in susceptible plants.  相似文献   

8.
A protease inhibitor was purified from the African marama bean (Tylosema esculenturm). The inhibitor is present in large amounts, representing about 10.5% of the total protein. The molecular weight is slightly larger than soybean trypsin inhibitor and was estimated at 23,000 by SDS-gel electrophoresis or 24,500 by amino acid analysis. The amino acid composition was atypical of most other plant inhibitors with a cysteine content of only one or possibly two residues/mole and a blocked amino terminus. Inhibition studies indicated virtually no inhibition of chymotrypsin activity. Elastase, however, was inhibited to the same extent as trypsin, requiring about 2 moles of inhibitor for complete inhibition of the enzyme.  相似文献   

9.
The sequence of a trypsin inhibitor, isolated from wheat endosperm, is reported. The primary structure was obtained by automatic sequence analysis of the S-alkylated protein and of purified peptides derived from chemical cleavage by cyanogen bromide and digestion withStaphylococcus aureus V8 protease. This protein, named wheat trypsin inhibitor (WTI), which is comprised of a total of 71 amino acid residues, has 12 cysteines, all involved in disulfide bridges. The primary site of interaction (reactive site) with bovine trypsin has been identified as the dipeptide arginyl-methionyl at positions 19 and 20. WTI has a high degree of sequence identity with a number of serine proteinase inhibitors isolated from both cereal and leguminous plants. On the basis of the findings presented, this protein has been classified as a single-headed trypsin inhibitor of Bowman-Birk type.  相似文献   

10.
Three variants of a chymotrypsin-like protease were purified from scallop digestive glands successively by ion-exchange, gel filtration and high-performance liquid chromatographies. Enzyme activity was detected using succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as a specific synthetic substrate for chymotrypsin. This proteinase was inhibited by chymostatin, diisopropylfluorophosphate and phenylmethylsulfonyl fluoride. Estimated molecular mass of the purified enzyme is around 32 kDa. These isoenzymes exhibit very low activities in hydrolyzing small synthetic specific substrates used for trypsic, elastolytic and collagenolytic measurements and referred mainly to a chymotrypsin-like proteinase. Very few differences were measured concerning pH profiles among the three isoenzymes. Stability is higher at low temperature for two variants. An N-terminal analysis was performed on one variant (B) among the three isoenzymes. The alignment of the N-terminal amino acid sequence indicates some homologies with abalone chymotrypsin-like protein and arthropod chymotrypsin proteases as well as with vertebrate serine protease counterparts (trypsin, chymotrypsin and elastase).  相似文献   

11.
A serine protease, named as "Milin" was purified to homogeneity from the latex of Euphorbia milii, a medicinal plant of Euphorbiaceae family. The molecular mass (SDS-PAGE), optimum pH and temperature of the enzyme were 51kDa, pH 8.0 and 60 degrees C, respectively. Milin retains full proteolytic activity over a wide range of pH (5.5-12) and temperature (up to 65 degrees C) with casein and azoalbumin as substrates. The activity of milin is inhibited by serine proteases inhibitors like PMSF, APMSF and DFP, but not by any other protease inhibitors such as E-64 and PCMB. Like the other serine proteases from the genus Euphorbia, the activity of milin was not inhibited by the proteinaceous inhibitor soyabean trypsin inhibitor (SBTI) even at very high concentrations that is naturally present in plants. The specific extinction coefficient (epsilon(280 nm)(1%)), molar extinction coefficient (a(m)) and isoelectric point of the enzyme were found to be 29, 152,500 M(-1) cm(-1) and pH 7.2, respectively. The enzyme is a glycoprotein with detectable carbohydrate moiety (7-8%) in its constitution, which is essential for the activity. The numbers of tryptophan, tyrosine and cysteine residues in the sequence of milin were estimated chemically and are 23, 14 and 14, respectively. Of the 14-cysteine residues, 12 constituted 6-disulfide linkages while two are free cysteines. The N-terminal sequence (first 12 amino acid residues) was determined and does not match with any sequence of known plant serine proteases. Perturbation studies by temperature, pH and chaotropes of the enzyme also reveal its high stability as seen by CD, fluorescence and proteolytic activity. Thus, this serine protease may have potential applications in food industry.  相似文献   

12.
Protease inhibitors cause mortality in a range of insects, and transgenic plants expressing protease inhibitors have been protected against pest attack, particularly internal feeders that are not amenable to control by conventional means. A study of luminal proteases in Conogethes punctiferalis Guenée was performed to identify potential targets for proteinaceous biopesticides, such as protease inhibitors. The midgut protease profile of the gut lumen from C. punctiferalis was studied to determine the conditions for optimal protein hydrolysis. Optimum conditions for peptidase activity were found to be in 50 mm Tris-HCl, pH 10 containing 20 mm CaCl2; incubation for 30 min at 40 degrees C. Four synthetic substrates, i.e. benzoyl-arg-p-nitroanilide, benzoyl-tyr-p-nitroanilide, succinyl-ala-ala-pro-leu-p-nitroanilide (SAAPLpNA) and leu-p-nitroanilide were hydrolysed by C. punctiferalis gut proteases in Tris-HCl buffer pH 10. Trypsin and elastase-like chymotrypsin were the prominent digestive proteases, and age-related modulation of midgut proteases existed for trypsin, chymotrypsin, elastase-like chymotrypsin and leucine aminopeptidase. Serine protease inhibitors such as aprotinin, soybean trypsin inhibitor and phenylmethanesulfonyl fluoride inhibited peptidase activity. Some metal ions such as Ca(2+), Mg(2+), Pb(2+) and Co(2+) enhanced BApNA-ase activity whereas others like Mn(2+), Zn(2+), Cu(2+), Fe(2+) and Hg(2+) were inhibitory at 6 mm concentration. Trypsin and elastase-like chymotrypsin were significantly inhibited by 94% and 29%, respectively, by aprotinin (150 nm) under in vitro conditions. A possible incorporation of protease inhibitors into transgenic plants is discussed.  相似文献   

13.
Li J  Wu J  Wang Y  Xu X  Liu T  Lai R  Zhu H 《Biochimie》2008,90(9):1356-1361
A novel peptide inhibitor (OGTI) of serine protease with a molecular weight of 1949.8, was purified from the skin secretion of the frog, Odorrana grahami. Of the tested serine proteases, OGTI only inhibited the hydrolysis activity of trypsin on synthetic chromogenic substrate. This precursor deduced from the cDNA sequence is composed of 70 amino acid residues. The mature OGTI contains 17 amino acid residues including a six-residue loop disulfided by two half-cysteines (AVNIPFKVHFRCKAAFC). In addition to its unique six-residue loop, the overall structure and precursor of OGTI are different from those of other serine protease inhibitors. It is also one of the smallest serine protease inhibitors ever found.  相似文献   

14.
Three distinct digestive protease activities, with strongly alkaline pH optima, were identified in the gut of tomato moth (Lacanobia oleracea) larvae, and characterised using specific synthetic substrates and inhibitors. These were; a trypsin-like activity, a chymotrypsin-like activity specific for substrates and inhibitors containing more than one amino acid residue, and an elastase-like activity, accounting for 40%, 30% and 20% of overall proteolysis respectively. The protease activities differed in their sensitivities to inhibition by different plant protein protease inhibitors (PIs), as estimated by I(50) values. Soya bean Kunitz trypsin inhibitor (SKTI) was the only plant PI tested to inhibit all three digestive protease activities at concentrations <40 &mgr;g/ml (approx. 5x10(-6)M). Incorporation of SKTI into a potato leaf-based artificial diet at 2% of total protein, decreased larval survival and growth (by approx. 33% and 40% respectively after 21 days) and retarded development (by approx. 2 days). However, when SKTI was expressed in transgenic potato plants at approx. 0.5% of total protein, only marginal effects on L. oleracea larvae were observed, which decreased with time. Whilst the presence of SKTI in artificial diet increased endogenous larval trypsin-like activity by up to four-fold, no effects on this activity were observed in larvae feeding on transgenic plants.  相似文献   

15.
Serratia proteamaculans HY-3 isolated from the digestive tract of a spider produces an extracellular protease named arazyme, with an estimated molecular mass of 51.5 kDa. The purified enzyme was characterized as having high activities at wide pH and temperature ranges. We further characterized biochemical features of the enzymatic reactions under various reaction conditions. The protease efficiently hydrolyzed a broad range of protein substrates including albumin, keratin, and collagen. The dependence of enzymatic activities on the presence of metal ions such as calcium and zinc indicated that the enzyme is a metalloprotease, together with the previous observation that the proteolytic activity of the enzyme was not inhibited by aspartate, cysteine, or serine protease inhibitors, but strongly inhibited by 1,10-phenanthroline and EDTA. The araA gene encoding the exoprotease was isolated as a 5.6 kb BamHl fragment after PCR amplification using degenerate primers and subsequent Southern hybridization. The nucleotide sequence revealed that the deduced amino acid sequences shared extensive similarity with those of the serralysin family of metalloproteases from other enteric bacteria. A gene (inh) encoding a putative protease inhibitor was also identified immediately adjacent to the araA structural gene.  相似文献   

16.
The complete amino acid sequence of a major trypsin inhibitor (FMTI-II) from seeds of foxtail millet (Setaria italica) was determined by analysis of peptides derived from the reduced and S-carboxymethylated protein by digestion with TPCK-trypsin and Staphylococcus aureus V8 protease. FMTI-II consists of 67 amino acid residues, including 10 half-cystine residues which are involved in 5 disulfide bridges in the molecule. The established sequence had a high degree of homology to Bowman-Birk type inhibitors from leguminous and gramineous plants. The trypsin reactive-site peptide bond in FMTI-II also appears to be Lys (16)-Ser (17) by comparison with these sequences.  相似文献   

17.
周晓群  高艳玲  赵奎军  樊东 《昆虫学报》2014,57(9):1008-1017
【目的】本研究旨在从苜蓿夜蛾Heliothis viriplaca中肠克隆出丝氨酸蛋白酶(serine protease, SP)基因的cDNA序列,测定原核表达后的蛋白经纯化及复性后的活性。【方法】运用RT-PCR和cDNA末端快速扩增方法(rapid amplification of cDNA ends, RACE)克隆苜蓿夜蛾幼虫中肠丝氨酸蛋白酶cDNA全序列,用大肠杆菌Escherichia coli表达系统进行表达。重组蛋白经纯化后,利用梯度透析法进行复性,以BApNA为底物,进行活性测定。【结果】克隆获得的苜蓿夜蛾中肠丝氨酸蛋白酶基因命名为HvSP(GenBank登录号:JX866720),该基因全长880 bp,开放阅读框长762 bp,编码254个氨基酸,推测分子量和pI值分别为26.9 kDa和9.49。由HvSP推导的氨基酸与鳞翅目昆虫SP氨基酸序列的一致性在52%~95%之间,其中与棉铃虫Helicoverpa armigera SP(GenBank登录号:CAA72962)的氨基酸序列一致性最高,达95%。成功构建重组载体pET21b-HvSP进行原核表达,Western-blot鉴定确定为目的蛋白。蛋白可溶性分析发现重组蛋白为包涵体。在Glycine-NaOH缓冲液中,当pH为10.0时,复性的重组蛋白活性达到最高,为35.74 U/mL。【结论】本研究在苜蓿夜蛾体内获得了一个新的丝氨酸蛋白酶基因,且原核表达后的重组蛋白经过变性、纯化及复性后具有活性。该结果为进一步研究丝氨酸蛋白酶在鳞翅目昆虫体内的生理功能奠定了基础。  相似文献   

18.
Three protease inhibitors (OTI-1-3) have been purified from onion (Allium cepa L.) bulbs. Molecular masses of these inhibitors were found to be 7,370.2, 7,472.2, and 7,642.6 Da by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), respectively. Based on amino acid composition and N-terminal sequence, OTI-1 and -2 are the N-terminal truncated proteins of OTI-3. All the inhibitors are stable to heat and extreme pH. OTI-3 inhibited trypsin, chymotrypsin, and plasmin with dissociation constants of 1.3 x 10(-9) M, 2.3 x 10(-7) M, and 3.1 x 10(-7) M, respectively. The complete amino acid sequence of OTI-3 showed a significant homology to Bowman-Birk family inhibitors, and the first reactive site (P1) was found to be Arg17 by limited proteolysis by trypsin. The second reactive site (P1) was estimated to be Leu46, that may inhibit chymotrypsin. OTI-3 lacks an S-S bond near the second reactive site, resulting in a low affinity for the enzyme. The sequence of OTI-3 was also ascertained by the nucleotide sequence of a cDNA clone encoding a 101-residue precursor of the onion inhibitor.  相似文献   

19.
An aminopeptidase was purified from the rat-liver cytosolic fraction to apparent electrophoretic homogeneity. The enzyme is a monomeric protein of 95 kDa, having an isoelectric point of 4.9. Amino acid analyses indicate that the enzyme is rich in acidic amino acids and is poor in cysteine. The enzyme hydrolyzed a broad spectrum of amino acid beta-naphthylamides at a neutral pH. The enzyme also hydrolyzed di-, tri-, and oligopeptides, including physiologically active peptides such as enkephalins and Met-Lys-bradykinin. The enzyme was inhibited by metal-chelating agents, sulfhydryl-reactive reagents, N-P-tosyl-L-phenylalaninechloromethyl ketone, N-P-tosyl-L-lysinechloromethyl ketone, and puromycin but not by protease inhibitors of microbial origin. The enzyme was activated by the addition of Co2+ and sulfhydryl compounds. The aminopeptidase enhanced proteolysis when the enzyme was added to the protease assay system with purified rat-liver cytosolic neutral protease, suggesting the cooperative action of aminopeptidase in the overall process of protein degradation.  相似文献   

20.
The ornamental tobacco (Nicotiana alata) produces one 6-kDa chymotrypsin inhibitor and four 6-kDa trypsin inhibitors from a single 40.3-kDa precursor protein. Three different approaches have been used to assess the potential of these proteinase inhibitors (PIs) in insect control. The first was an in-vitro approach in which all five inhibitors, the single chymotrypsin inhibitor or three of the four trypsin inhibitors were tested for their ability to inhibit gut protease activity in insects from four orders. The second approach was to incorporate the N. alata PIs in the artificial diet of the native budworm (Helicoverpa punctigera) and the black field cricket (Teleogryllus commodus). H. punctigera larvae and T. commodus nymphs had a significant (P<0.01) reduction in growth after ingestion of the PI and were more lethargic than insects on the control diet. Several of the H. punctigera larvae also failed to complete moulting at the third or fourth instar. The third approach was to express the N. alata PIs in transgenic tobacco under the control of the 35S CaMV promoter. When H. punctigera larvae were fed tobacco leaves expressing the N. alata PIs at 0.2% soluble protein, significant (P<0.01) differences in mortality and/or growth rate were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号