首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-molecule fluorescence resonance energy transfer and functional assays have been used to study the initiation and regulation of the bacteriophage T4 DNA replication system. Previous work has demonstrated that a complex of the helicase loading protein (gp59) and the DNA polymerase (gp43) on forked DNA totally inhibits the polymerase and exonuclease activities of gp43 by a molecular locking mechanism (Xi, J., Zhuang, Z., Zhang, Z., Selzer, T., Spiering, M. M., Hammes, G. G., and Benkovic, S. J. (2005) Biochemistry 44, 2305-2318). We now show that this complex is "unlocked" by the addition of the helicase (gp41) with restoration of the DNA polymerase activity. Gp59 retains its ability to load the helicase while forming a gp59-gp43 complex at a DNA fork in the presence of the single-stranded DNA binding protein (gp32). Upon the addition of gp41 and MgATP, gp59 dissociates from the complex, and the DNA-bound gp41 is capable of recruiting the primase (gp61) to form a functional primosome and, subsequently, a fully active replisome. Functional assays of leading- and lagging-strand synthesis on an active replication fork show that the absence of gp59 has no effect on the coupling of leading- and lagging-strand synthesis or on the size of the Okazaki DNA fragments. We conclude that gp59 acts in a manner similar to the clamp loader to ensure proper assembly of the replisome and does not remain as a replisome component during active replication.  相似文献   

2.
There are two modes of DNA synthesis at a replication fork. The leading strand is synthesized in a continuous fashion in lengths that in Escherichia coli can be in excess of 2 megabases. On the other hand, the lagging strand is synthesized in relatively short stretches of 2 kilobases. Nevertheless, identical assemblies of the DNA polymerase III core tethered to the beta sliding clamp account for both modes of DNA synthesis. Yet the same lagging strand polymerase accounts for the synthesis of all Okazaki fragments at a replication fork, cycling repeatedly every 1 or 2 s from the 3'-end of the just-completed fragment to the 3'-end of the new primer. Several models have been invoked to account for the rapid cycling of a polymerase complex that can remain bound to the template for upward of 40 min. By using isolated replication protein-DNA template complexes, we have tested these models and show here that cycling of the lagging strand polymerase can be triggered by either the action of primase binding to the replisome and synthesizing a primer or by collision of the lagging strand polymerase with the 5'-end of the previous Okazaki fragment.  相似文献   

3.
Given the polarity of DNA duplex, replication by the leading strand polymerase is continuous whereas that by the lagging strand polymerase is discontinuous proceeding through Okazaki fragments. Yet the respective polymerases act processively, implying that the recycling of the lagging strand polymerase is a controlled process. We demonstrate that the rate of the lagging strand polymerase relative to that of fork movement affects Okazaki fragment size and generates ssDNA gaps. We show by using a substrate with limited priming sites that Okazaki fragments can be shifted to shorter lengths by varying the rate of the primase. We find that clamp and clamp loader levels affect both primer utilization and Okazaki fragment size, possibly implicating clamp loading onto the RNA primer in the mechanism of lagging strand polymerase recycling. We formulate a signaling model capable of rationalizing the distribution of Okazaki fragments under various conditions for this and possibly other replisomes.  相似文献   

4.
DNA replication is a highly processive and efficient process that involves the coordination of at least eight proteins to form the replisome in bacteriophage T4. Replication of DNA occurs in the 5' to 3' direction resulting in continuous replication on the leading strand and discontinuous replication on the lagging strand. A key question is how a continuous and discontinuous replication process is coordinated. One solution is to avoid having the completion of one Okazaki fragment to signal the start of the next but instead to have a key step such as priming proceed in parallel to lagging strand replication. Such a mechanism requires protein elements of the replisome to readily dissociate during the replication process. Protein trapping experiments were performed to test for dissociation of the clamp loader and primase from an active replisome in vitro whose template was both a small synthetic DNA minicircle and a larger DNA substrate. The primase, clamp, and clamp loader are found to dissociate from the replisome and are continuously recruited from solution. The effect of varying protein concentrations (dilution) on the size of Okazaki fragments supported the protein trapping results. These findings are in accord with previous results for the accessory proteins but, importantly now, identify the primase as dissociating from an active replisome. The recruitment of the primase from solution during DNA synthesis has also been found for Escherichia coli but not bacteriophage T7. The implications of these results for RNA priming and extension during the repetitive synthesis of Okazaki fragments are discussed.  相似文献   

5.
Reactions at the replication fork of bacteriophage T7 have been reconstituted in vitro on a preformed replication fork. A minimum of three proteins is required to catalyze leading and lagging strand synthesis. The T7 gene 4 protein, which exists in two forms of molecular weight 56,000 and 63,000, provides helicase and primase activities. A tight complex of the T7 gene 5 protein and Escherichia coli thioredoxin provides DNA polymerase activity. Gene 4 protein and DNA polymerase catalyze processive leading strand synthesis. Gene 4 protein molecules serving as helicase remain bound to the template as leading strand synthesis proceeds greater than 40 kilobases. Primer synthesis for lagging strand synthesis is catalyzed by additional gene 4 protein molecules that undergo multiple association/dissociation steps to catalyze multiple rounds of primer synthesis. The smaller molecular weight form of gene 4 protein has been purified from an equimolar mixture of both forms. Removal of the large form results in the loss of primase activity but not of helicase activity. Submolar amounts of the large form present in a mixture of both forms are sufficient to restore high specific activity of primase characteristic of an equimolar mixture of both forms. These results suggest that the gene 4 primase is an oligomer which is composed of both molecular weight forms. The large form may be the distributive component of the primase which dissociates from the template after each round of primer synthesis.  相似文献   

6.
The sliding clamp is an essential component of the replisome required for processivity of DNA synthesis and several other aspects of chromosome metabolism. However, the in vivo dynamics of the clamp are poorly understood. We have used various biochemical and cell biological methods to study the dynamics of clamp association with the replisome in Bacillus subtilis cells. We find that clamps form large assemblies on DNA, called "clamp zones." Loading depends on DnaG primase and is probably driven by Okazaki fragment initiation on the lagging strand. Unloading, which is probably regulated, only occurs after many clamps have accumulated on the DNA. On/off cycling allows chromosomal zones of about 200 accumulated clamps to follow the replisome. Since we also show that clamp zones recruit proteins bearing a clamp-binding sequence to replication foci, the results highlight the clamp as a central organizer in the structure and function of replication foci.  相似文献   

7.
The bacteriophage T4 replication complex is composed of eight proteins that function together to replicate DNA. This replisome can be broken down into four basic units: a primosome composed of gp41, gp61, and gp59; a leading strand holoenzyme composed of gp43, gp44/62, and gp45; a lagging strand holoenzyme; and a single strand binding protein polymer. These units interact further to form the complete replisome. The leading and lagging strand polymerases are physically linked in the presence of DNA or an active replisome. The region of interaction was mapped to an extension of the finger domain, such that Cys-507 of one subunit is in close proximity to Cys-507 of a second subunit. The leading strand polymerase and the primosome also associate, such that gp59 mediates the contact between the two complexes. Binding of gp43 to the primosome complex causes displacement of gp32 from the gp59.gp61.gp41 primosome complex. The resultant species is a complex of proteins that may allow coordinated leading and lagging strand synthesis, helicase DNA unwinding activity, and polymerase nucleotide incorporation.  相似文献   

8.
Prokaryotic DNA replication mechanisms   总被引:8,自引:0,他引:8  
The three different prokaryotic replication systems that have been most extensively studied use the same basic components for moving a DNA replication fork, even though the individual proteins are different and lack extensive amino acid sequence homology. In the T4 bacteriophage system, the components of the DNA replication complex can be grouped into functional classes as follows: DNA polymerase (gene 43 protein), helix-destabilizing protein (gene 32 protein), polymerase accessory proteins (gene 44/62 and 45 proteins), and primosome proteins (gene 41 DNA helicase and gene 61 RNA primase). DNA synthesis in the in vitro system starts by covalent addition onto the 3'OH end at a random nick on a double-stranded DNA template and proceeds to generate a replication fork that moves at about the in vivo rate, and with approximately the in vivo base-pairing fidelity. DNA is synthesized at the fork in a continuous fashion on the leading strand and in a discontinuous fashion on the lagging strand (generating short Okazaki fragments with 5'-linked pppApCpXpYpZ pentaribonucleotide primers). Kinetic studies reveal that the DNA polymerase molecule on the lagging strand stays associated with the fork as it moves. Therefore the DNA template on the lagging strand must be folded so that the stop site for the synthesis of one Okazaki fragment is adjacent to the start site for the next such fragment, allowing the polymerase and other replication proteins on the lagging strand to recycle.  相似文献   

9.
DNA is constantly damaged by endogenous and exogenous agents. The resulting DNA lesions have the potential to halt the progression of the replisome, possibly leading to replication fork collapse. Here, we examine the effect of a noncoding DNA lesion in either leading strand template or lagging strand template on the bacteriophage T4 replisome. A damaged base in the lagging strand template does not affect the progression of the replication fork. Instead, the stalled lagging strand polymerase recycles from the lesion and initiates the synthesis of a new Okazaki fragment upstream of the damaged base. In contrast, when the replisome encounters a blocking lesion in the leading strand template, the replication fork only travels approximately 1 kb beyond the point of the DNA lesion before complete replication fork collapse. The primosome and the lagging strand polymerase remain active during this period, and an Okazaki fragment is synthesized beyond the point of the leading strand lesion. There is no evidence for a new priming event on the leading strand template. Instead, the DNA structure that is produced by the stalled replication fork is a substrate for the DNA repair helicase UvsW. UvsW catalyzes the regression of a stalled replication fork into a “chicken-foot” structure that has been postulated to be an intermediate in an error-free lesion bypass pathway.  相似文献   

10.
Semi-conservative DNA synthesis reactions catalyzed by the bacteriophage T4 DNA polymerase holoenzyme are initiated by a strand displacement mechanism requiring gp32, the T4 single-stranded DNA (ssDNA)-binding protein, to sequester the displaced strand. After initiation, DNA helicase acquisition by the nascent replication fork leads to a dramatic increase in the rate and processivity of leading strand DNA synthesis. In vitro studies have established that either of two T4-encoded DNA helicases, gp41 or dda, is capable of stimulating strand displacement synthesis. The acquisition of either helicase by the nascent replication fork is modulated by other protein components of the fork including gp32 and, in the case of the gp41 helicase, its mediator/loading protein gp59. Here, we examine the relationships between gp32 and the gp41/gp59 and dda helicase systems, respectively, during T4 replication using altered forms of gp32 defective in either protein-protein or protein-ssDNA interactions. We show that optimal stimulation of DNA synthesis by gp41/gp59 helicase requires gp32-gp59 interactions and is strongly dependent on the stability of ssDNA binding by gp32. Fluorescence assays demonstrate that gp59 binds stoichiometrically to forked DNA molecules; however, gp59-forked DNA complexes are destabilized via protein-protein interactions with the C-terminal "A-domain" fragment of gp32. These and previously published results suggest a model in which a mobile gp59-gp32 cluster bound to lagging strand ssDNA is the target for gp41 helicase assembly. In contrast, stimulation of DNA synthesis by dda helicase requires direct gp32-dda protein-protein interactions and is relatively unaffected by mutations in gp32 that destabilize its ssDNA binding activity. The latter data support a model in which protein-protein interactions with gp32 maintain dda in a proper active state for translocation at the replication fork. The relationship between dda and gp32 proteins in T4 replication appears similar to the relationship observed between the UL9 helicase and ICP8 ssDNA-binding protein in herpesvirus replication.  相似文献   

11.
At a replication fork DNA primase synthesizes oligoribonucleotides that serve as primers for the lagging strand DNA polymerase. In the bacteriophage T7 replication system, DNA primase is encoded by gene 4 of the phage. The 63-kDa gene 4 protein is composed of two major domains, a helicase domain and a primase domain located in the C- and N-terminal halves of the protein, respectively. T7 DNA primase recognizes the sequence 5'-NNGTC-3' via a zinc motif and catalyzes the template-directed synthesis of tetraribonucleotides pppACNN. T7 DNA primase, like other primases, shares limited homology with DNA-dependent RNA polymerases. To identify the catalytic core of the T7 DNA primase, single-point mutations were introduced into a basic region that shares sequence homology with RNA polymerases. The genetically altered gene 4 proteins were examined for their ability to support phage growth, to synthesize functional primers, and to recognize primase recognition sites. Two lysine residues, Lys-122 and Lys-128, are essential for phage growth. The two residues play a key role in the synthesis of phosphodiester bonds but are not involved in other activities mediated by the protein. The altered primases are unable to either synthesize or extend an oligoribonucleotide. However, the altered primases do recognize the primase recognition sequence, anneal an exogenous primer 5'-ACCC-3' at the site, and transfer the primer to T7 DNA polymerase. Other lysines in the vicinity are not essential for the synthesis of primers.  相似文献   

12.
The lagging strand of the replication fork is initially copied as short Okazaki fragments produced by the coupled activities of two template-dependent enzymes, a primase that synthesizes RNA primers and a DNA polymerase that elongates them. Gene 4 of bacteriophage T7 encodes a bifunctional primase-helicase that assembles into a ring-shaped hexamer with both DNA unwinding and primer synthesis activities. The primase is also required for the utilization of RNA primers by T7 DNA polymerase. It is not known how many subunits of the primase-helicase hexamer participate directly in the priming of DNA synthesis. In order to determine the minimal requirements for RNA primer utilization by T7 DNA polymerase, we created an altered gene 4 protein that does not form functional hexamers and consequently lacks detectable DNA unwinding activity. Remarkably, this monomeric primase readily primes DNA synthesis by T7 DNA polymerase on single-stranded templates. The monomeric gene 4 protein forms a specific and stable complex with T7 DNA polymerase and thereby delivers the RNA primer to the polymerase for the onset of DNA synthesis. These results show that a single subunit of the primase-helicase hexamer contains all of the residues required for primer synthesis and for utilization of primers by T7 DNA polymerase.  相似文献   

13.
Khopde S  Biswas EE  Biswas SB 《Biochemistry》2002,41(50):14820-14830
Primase is an essential DNA replication enzyme in Escherichia coli and responsible for primer synthesis during lagging strand DNA replication. Although the interaction of primase with single-stranded DNA plays an important role in primer RNA and Okazaki fragment synthesis, the mechanism of DNA binding and site selection for primer synthesis remains unknown. We have analyzed the energetics of DNA binding and the mechanism of site selection for the initiation of primer RNA synthesis on the lagging strand of the replication fork. Quantitative analysis of DNA binding by primase was carried out using a number of oligonucleotide sequences: oligo(dT)(25) and a 30 bp oligonucleotide derived from bacteriophage G4 origin (G4ori-wt). Primase bound both sequences with moderate affinity (K(d) = 1.2-1.4 x 10(-)(7) M); however, binding was stronger for G4ori-wt. G4ori-wt contained a CTG trinucleotide, which is a preferred site for initiation of primer synthesis. Analysis of DNA binding isotherms derived from primase binding to the oligonucleotide sequences by fluorescence anisotropy indicated that primase bound to DNA as a dimer, and this finding was further substantiated by electrophoretic mobility shift assays (EMSAs) and UV cross-linking of the primase-DNA complex. Dissection of the energetics involved in the primase-DNA interaction revealed a higher affinity of primase for DNA sequences containing the CTG triplet. This sequence preference of primase may likely be responsible for the initiation of primer synthesis in the CTG triplet sites in the E. coli lagging strand as well as in the origin of replication of bacteriophage G4.  相似文献   

14.
During DNA replication, repetitive synthesis of discrete Okazaki fragments requires mechanisms that guarantee DNA polymerase, clamp, and primase proteins are present for every cycle. In Escherichia coli, this process proceeds through transfer of the lagging-strand polymerase from the β sliding clamp left at a completed Okazaki fragment to a clamp assembled on a new RNA primer. These lagging-strand clamps are thought to be bound by the replisome from solution and loaded a new for every fragment. Here, we discuss a surprising, alternative lagging-strand synthesis mechanism: efficient replication in the absence of any clamps other than those assembled with the replisome. Using single-molecule experiments, we show that replication complexes pre-assembled on DNA support synthesis of multiple Okazaki fragments in the absence of excess β clamps. The processivity of these replisomes, but not the number of synthesized Okazaki fragments, is dependent on the frequency of RNA-primer synthesis. These results broaden our understanding of lagging-strand synthesis and emphasize the stability of the replisome to continue synthesis without new clamps.  相似文献   

15.
16.
The T7 DNA primase synthesizes tetraribonucleotides that prime DNA synthesis by T7 DNA polymerase but only on the condition that the primase stabilizes the primed DNA template in the polymerase active site. We used NMR experiments and alanine scanning mutagenesis to identify residues in the zinc binding domain of T7 primase that engage the primed DNA template to initiate DNA synthesis by T7 DNA polymerase. These residues cover one face of the zinc binding domain and include a number of aromatic amino acids that are conserved in bacteriophage primases. The phage T7 single-stranded DNA-binding protein gp2.5 specifically interfered with the utilization of tetraribonucleotide primers by interacting with T7 DNA polymerase and preventing a productive interaction with the primed template. We propose that the opposing effects of gp2.5 and T7 primase on the initiation of DNA synthesis reflect a sequence of mutually exclusive interactions that occur during the recycling of the polymerase on the lagging strand of the replication fork.  相似文献   

17.
The bacteriophage T4 gene 41 protein is a 5' to 3' DNA helicase which unwinds DNA ahead of the growing replication fork and, together with the T4 gene 61 protein, also functions as a primase to initiate DNA synthesis on the lagging strand. Proteolytic cleavage by trypsin approximately 20 amino acids from the COOH terminus of the 41 protein produces 41T, a 51,500-dalton fragment (possibly still associated with small COOH-terminal fragments) which still retains the ssDNA-stimulated GTPase (ATPase) activity, the 61 protein-stimulated DNA helicase activity, and the ability to act with 61 protein to synthesize pentaribonucleotide primers. In the absence of the T4 gene 32 ssDNA binding protein, the primase-helicase composed of the tryptic fragment (41T) and 61 proteins efficiently primes DNA synthesis on circular ssDNA templates by the T4 DNA polymerase and the three T4 polymerase accessory proteins. In contrast, the 41T protein is defective as a helicase or a primase component on 32 protein-covered DNA. Thus, unlike the intact protein, 41T does not support RNA-dependent DNA synthesis on 32 protein-covered ssDNA and does not stimulate strand displacement DNA synthesis on a nicked duplex DNA template. High concentrations of 32 protein strongly inhibit RNA primer synthesis with either 41 T or intact 41 protein. The 44/62 and 45 polymerase accessory proteins (and even the 44/62 proteins to some extent) substantially reverse the 32 protein inhibition of RNA primer synthesis with intact 41 protein but not with 41T protein. We propose that the COOH-terminal region of the 41 protein is required for its interaction with the T4 polymerase accessory proteins, permitting the synthesis and utilization of RNA primers and helicase function within the T4 replication complex. When this region is altered, as in 41T protein, the protein is unable to assemble a functional primase-helicase in the replication complex. An easy and rapid purification of T4 41 protein produced by a plasmid encoding this gene (Hinton, D. M., Silver, L. L., and Nossal, N. G. (1985) J. Biol. Chem. 260, 12851-12857) is also described.  相似文献   

18.
In T4 bacteriophage, the DNA polymerase holoenzyme is responsible for accurate and processive DNA synthesis. The holoenzyme consists of DNA polymerase gp43 and clamp protein gp45. To form a productive holoenzyme complex, clamp loader protein gp44/62 is required for the loading of gp45, along with MgATP, and also for the subsequent binding of polymerase to the loaded clamp. Recently published evidence suggests that holoenzyme assembly in the T4 replisome may take place via more than one pathway [Zhuang, Z., Berdis, A. J., and Benkovic, S. J. (2006) Biochemistry 45, 7976-7989]. To demonstrate unequivocally whether there are multiple pathways leading to the formation of a productive holoenzyme, single-molecule fluorescence microscopy has been used to study the potential clamp loading and holoenzyme assembly pathways on a single-molecule DNA substrate. The results obtained reveal four pathways that foster the formation of a functional holoenzyme on DNA: (1) clamp loader-clamp complex binding to DNA followed by polymerase, (2) clamp loader binding to DNA followed by clamp and then polymerase, (3) clamp binding to DNA followed by clamp loader and then polymerase, and (4) polymerase binding to DNA followed by the clamp loader-clamp complex. In all cases, MgATP is required. The possible physiological significance of the various assembly pathways is discussed in the context of replication initiation and lagging strand synthesis during various stages of T4 phage replication.  相似文献   

19.
The coordination of primase function within the replisome is an essential but poorly understood feature of lagging strand synthesis. By using crystallography and small-angle X-ray scattering (SAXS), we show that functional elements of bacterial primase transition between two dominant conformations: an extended form that uncouples a regulatory domain from its associated RNA polymerase core and a compact state that sequesters the regulatory region from the site of primer synthesis. FRET studies and priming assays reveal that the regulatory domain of one primase subunit productively associates with nucleic acid that is bound to the polymerase domain of a second protomer in trans. This intersubunit interaction allows primase to select initiation sites on template DNA and implicates the regulatory domain as a "molecular brake" that restricts primer length. Our data suggest that the replisome may cooperatively use multiple primases and this conformational switch to control initiation frequency, processivity, and ultimately, Okazaki fragment synthesis.  相似文献   

20.
Two models have been proposed for triggering release of the lagging strand polymerase at the replication fork, enabling cycling to the primer for the next Okazaki fragment—either collision with the 5′-end of the preceding fragment (collision model) or synthesis of a new primer by primase (signaling model). Specific perturbation of lagging strand elongation on minicircles with a highly asymmetric G:C distribution with ddGTP or dGDPNP yielded results that confirmed the signaling model and ruled out the collision model. We demonstrated that the presence of a primer, not primase per se, provides the signal that triggers cycling. Lagging strand synthesis proceeds much faster than leading strand synthesis, explaining why gaps between Okazaki fragments are not found under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号