首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ciliated protozoans present several features of chromosome segregation that are unique among eukaryotes, including their maintenance of two nuclei: a germline micronucleus, which undergoes conventional mitosis and meiosis, and a somatic macronucleus that divides by an amitotic process. To study ciliate chromosome segregation, we have identified the centromeric histone gene in the Tetrahymena thermophila genome (CNA1). CNA1p specifically localizes to peripheral centromeres in the micronucleus but is absent in the macronucleus during vegetative growth. During meiotic prophase of the micronucleus, when chromosomes are stretched to twice the length of the cell, CNA1p is found localized in punctate spots throughout the length of the chromosomes. As conjugation proceeds, CNA1p appears initially diffuse, but quickly reverts to discrete dots in those nuclei destined to become micronuclei, whereas it remains diffuse and is gradually lost in developing macronuclei. In progeny of germline CNA1 knockouts, we see no defects in macronuclear division or viability of the progeny cells immediately following the knockout. However, within a few divisions, progeny show abnormal mitotic segregation of their micronucleus, with most cells eventually losing their micronucleus entirely. This study reveals a strong dependence of the germline micronucleus on centromeric histones for proper chromosome segregation.  相似文献   

2.
3.
Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during prophase and prevents premature sister-chromatid separation. Heterochromatin protein 1 (HP1) has been proposed to protect centromeric sister-chromatid cohesion by directly targeting Sgo1 to centromeres in mitosis. Here we show that HP1α is targeted to mitotic centromeres by INCENP, a subunit of the chromosome passenger complex (CPC). Biochemical and structural studies show that both HP1-INCENP and HP1-Sgo1 interactions require the binding of the HP1 chromo shadow domain to PXVXL/I motifs in INCENP or Sgo1, suggesting that the INCENP-bound, centromeric HP1α is incapable of recruiting Sgo1. Consistently, a Sgo1 mutant deficient in HP1 binding is functional in centromeric cohesion protection and localizes normally to centromeres in mitosis. By contrast, INCENP or Sgo1 mutants deficient in HP1 binding fail to localize to centromeres in interphase. Therefore, our results suggest that HP1 binding by INCENP or Sgo1 is dispensable for centromeric cohesion protection during mitosis of human cells, but might regulate yet uncharacterized interphase functions of CPC or Sgo1 at the centromeres.  相似文献   

4.
5.
In Tetrahymena, as in other ciliates, development of the somatic macronucleus during conjugation involves extensive and reproducible rearrangements of the germ line genome, including chromosome fragmentation and excision of internal eliminated sequences (IESs). The molecular mechanisms controlling these events are poorly understood. To investigate the role that histone acetylation may play in the regulation of these processes, we treated Tetrahymena cells during conjugation with the histone deacetylase inhibitor trichostatin A (TSA). We show that TSA treatment induces developmental arrests in the early stages of conjugation but does not significantly affect the progression of conjugation once the mitotic divisions of the zygotic nucleus have occurred. Progeny produced from TSA-treated cells were examined for effects on IES excision and chromosome breakage. We found that TSA treatment caused partial inhibition of excision of five out of the six IESs analyzed but did not affect chromosome breakage at four different sites. TSA treatment greatly delayed in some cells and inhibited in most the excision events in the developing macronucleus. It also led to loss of the specialized subnuclear localization of the chromodomain protein Pdd1p that is normally associated with DNA elimination. We propose a model in which underacetylated nucleosomes mark germ line-limited sequences for excision.  相似文献   

6.
7.
Ciliates are unicellular eukaryotic organisms containing two types of nuclei: macronuclei and micronuclei. After the sexual pathway takes place, a new macronucleus is formed from a zygote nucleus, whereas the old macronucleus is degraded and resorbed. In the course of macronuclear differentiation, polytene chromosomes are synthesized that become degraded again after some hours. Most of the DNA is eliminated, and the remaining DNA is fragmented into small DNA molecules that are amplified to a high copy number in the new macronucleus. The protein Pdd1p (programmed DNA degradation protein 1) from Tetrahymena has been shown to be present in macronuclear anlagen in the DNA degradation stage and also in the old macronuclei, which are resorbed during the formation of the new macronucleus. In this study the identification and localization of a Pdd1p homologous protein in Stylonychia (Spdd1p) is described. Spdd1p is localized in the precursor nuclei in the DNA elimination stage and in the old macronuclei during their degradation, but also in macronuclei and micronuclei of starved cells. In all of these nuclei, apoptotic-like DNA breakdown was detected. These data suggest that Spdd1p is a general factor involved in programmed DNA degradation in Stylonychia.  相似文献   

8.
ABSTRACT. The germinal micronucleus divides six times during conjugation of Paramecium caudatum : this includes two meiotic divisions and one mitosis of haploid nuclei during mating, and three mitoses of a fertilization nucleus (synkaryon). Microsurgical removal of the macronucleus showed that micronuclei were able to divide repeatedly in the absence of the macronucleus, after metaphase of meiosis I of the micronucleus and also after synkaryon formation. When the macronucleus was removed after the first division of synkaryon, in an extreme case the synkaryon divided five times and produced 32 nuclei, compared to three divisions and eight nuclei produced in the presence of the macronucleus. Treatment with actinomycin D (100 μ /ml) inhibited the morphological changes of the macronucleus during conjugation and induced a multimicronucleate state in exconjugants. However, in other cells, it induced production of a few giant micronuclei. We conclude that the micronucleus is able to undergo repeated divisions at any stage of conjugation in the absence of the macronucleus once the factor(s) for induction of the micronuclear division has been produced by the macronucleus. The macronucleus may also produce a regulatory factor required to stop micronucler division.  相似文献   

9.
Tang Z  Shu H  Qi W  Mahmood NA  Mumby MC  Yu H 《Developmental cell》2006,10(5):575-585
Loss of sister-chromatid cohesion triggers chromosome segregation in mitosis and occurs through two mechanisms in vertebrate cells: (1) phosphorylation and removal of cohesin from chromosome arms by mitotic kinases, including Plk1, during prophase, and (2) cleavage of centromeric cohesin by separase at the metaphase-anaphase transition. Bub1 and the MEI-S332/Shugoshin (Sgo1) family of proteins protect centromeric cohesin from mitotic kinases during prophase. We show that human Sgo1 binds to protein phosphatase 2A (PP2A). PP2A localizes to centromeres in a Bub1-dependent manner. The Sgo1-PP2A interaction is required for centromeric localization of Sgo1 and proper chromosome segregation in human cells. Depletion of Plk1 by RNA interference (RNAi) restores centromeric localization of Sgo1 and prevents chromosome missegregation in cells depleted of PP2A_Aalpha. Our findings suggest that Bub1 targets PP2A to centromeres, which in turn maintains Sgo1 at centromeres by counteracting Plk1-mediated chromosome removal of Sgo1.  相似文献   

10.
The ring-shaped cohesin complex links sister chromatids until their timely segregation during mitosis. Cohesin is enriched at centromeres where it provides the cohesive counterforce to bipolar tension produced by the mitotic spindle. As a consequence of spindle tension, centromeric sequences transiently split in pre-anaphase cells, in some organisms up to several micrometers. This ‘centromere breathing’ presents a paradox, how sister sequences separate where cohesin is most enriched. We now show that in the budding yeast Saccharomyces cerevisiae, cohesin binding diminishes over centromeric sequences that split during breathing. We see no evidence for cohesin translocation to surrounding sequences, suggesting that cohesin is removed from centromeres during breathing. Two pools of cohesin can be distinguished. Cohesin loaded before DNA replication, which has established sister chromatid cohesion, disappears during breathing. In contrast, cohesin loaded after DNA replication is partly retained. As sister centromeres re-associate after transient separation, cohesin is reloaded in a manner independent of the canonical cohesin loader Scc2/Scc4. Efficient centromere re-association requires the cohesion establishment factor Eco1, suggesting that re-establishment of sister chromatid cohesion contributes to the dynamic behaviour of centromeres in mitosis. These findings provide new insights into cohesin behaviour at centromeres. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
SYNOPSIS. A full account of the nuclear changes during binary fission and conjugation in a local race of Blepharisma is presented in this paper. The macronucleus consists of 2 nodes connected by a strand. Number of micronuclei varies from 6 to 18. During binary fission, condensation of macronucleus is followed by elongation and thinning of the middle region which finally breaks. Daughter nuclei later attain the typical vegetative form. Notably, during binary fission some micronuclei appear to complete their mitoses by the time the macronucleus attains the condensed form, while others lag behind and exhibit practically every stage of mitosis.
During conjugation, from 6 to 10 micronuclei undergo the first pregamic division, the same number through the second division, and two products of the second division take part in the third division. The rest degenerate. Division products of the nuclei in the paraoral region take part in synkaryon formation. The synkaryon undergoes either 2 or 3 divisions. In the former case, of the 4 products, 2 become the macronuclear anlagen, one the micronucleus and the fourth degenerates. In the latter case, of the 8 products, 3 to 4 become the macronuclear anlagen and the rest become micronuclei. Chromatin elimination has been observed during the division of the macronuclear anlage, followed by an extra metagamic fission of the cell.
Comparison with two other races from India and an American race indicates considerable diversity in the structure and behaviour of the nuclear apparatus in different races of Blepharisma undulans.  相似文献   

12.
The centromere functions as a unique chromosomal attachment site for microtubules. Appropriate microtubule attachment is fundamental for organized chromosome behavior during mitosis and meiosis. Hence, centromeres must function both smoothly and stably. However, centromeric DNA sequences are poorly conserved between species despite common functions and similar centromeric protein composition, which leads us to the question: how are centromeres established and maintained? In this review, we summarize the recent progress in deciphering the mechanisms of centromere function. Specifically, we focus our attention on mechanisms closely-related to centromeric DNA and chromatin. By gathering such information, we hope to reveal a new dimension to the true nature of centromeres.  相似文献   

13.
Ke Y  Huh JW  Warrington R  Li B  Wu N  Leng M  Zhang J  Ball HL  Li B  Yu H 《The EMBO journal》2011,30(16):3309-3321
Centromeres nucleate the formation of kinetochores and are vital for chromosome segregation during mitosis. The SNF2 family helicase PICH (Plk1-interacting checkpoint helicase) and the BLM (the Bloom's syndrome protein) helicase decorate ultrafine histone-negative DNA threads that link the segregating sister centromeres during anaphase. The functions of PICH and BLM at these threads are not understood, however. Here, we show that PICH binds to BLM and enables BLM localization to anaphase centromeric threads. PICH- or BLM-RNAi cells fail to resolve these threads in anaphase. The fragmented threads form centromeric-chromatin-containing micronuclei in daughter cells. Anaphase threads in PICH- and BLM-RNAi cells contain histones and centromere markers. Recombinant purified PICH has nucleosome remodelling activities in vitro. We propose that PICH and BLM unravel centromeric chromatin and keep anaphase DNA threads mostly free of nucleosomes, thus allowing these threads to span long distances between rapidly segregating centromeres without breakage and providing a spatiotemporal window for their resolution.  相似文献   

14.
Conversion of the germ line micronuclear genome into the genome of a somatic macronucleus in Tetrahymena thermophila requires several DNA rearrangement processes. These include (i) excision and subsequent elimination of several thousand internal eliminated sequences (IESs) scattered throughout the micronuclear genome and (ii) breakage of the micronuclear chromosomes into hundreds of DNA fragments, followed by de novo telomere addition to their ends. Chromosome breakage sequences (Cbs) that determine the sites of breakage and short regions of DNA adjacent to them are also eliminated. Both processes occur concomitantly in the developing macronucleus. Two stage-specific protein factors involved in germ line DNA elimination have been described previously. Pdd1p and Pdd2p (for programmed DNA degradation) physically associate with internal eliminated sequences in transient electron-dense structures in the developing macronucleus. Here, we report the purification, sequence analysis, and characterization of Pdd3p, a novel developmentally regulated, chromodomain-containing polypeptide. Pdd3p colocalizes with Pdd1p in the peripheral regions of DNA elimination structures, but is also found more internally. DNA cross-linked and immunoprecipitated with Pdd1p- or Pdd3p-specific antibodies is enriched in IESs, but not Cbs, suggesting that different protein factors are involved in elimination of these two groups of sequences.  相似文献   

15.
16.
植物着丝粒结构和功能的研究进展   总被引:1,自引:0,他引:1  
佘朝文  宋运淳 《遗传》2006,28(12):1597-1606
着丝粒是真核生物有丝分裂和减数分裂染色体正确分离和传递所必需的染色体区域。十多年来, 已对包括拟南芥、水稻、玉米在内的一些植物的着丝粒进行了较深入的分子生物学研究。在不同的植物间, 着丝粒DNA的保守性很低, 呈现快速进化, 但着丝粒的DNA序列类型和组织方式基本相似, 一般是由夹杂排列着的卫星DNA串联重复阵列和着丝粒专一的反转录转座子构成。与着丝粒DNA相反, 着丝粒/着丝点的结构性和瞬时蛋白质在包括植物在内的真核生物中保守。与其他真核生物的情况一样, 拥有含着丝粒组蛋白H3(CENH3)的核小体是植物功能着丝粒染色质最基本的特征, CENH3在着丝粒染色质的识别和保持中起着关键作用。  相似文献   

17.
Centromeres play a vital role in maintaining the genomic stability of eukaryotes by coordinating the equal distribution of chromosomes to daughter cells during mitosis and meiosis. Fission yeast (S. pombe) centromeres consist of a 4-9 kb central core region and 30-100 kb of flanking inner (imr/B) and outer (otr/K) repeats. These sequences direct a laminar kinetochore structure similar to that of human centromeres. Centromeric heterochromatin is generally underacetylated. We have previously shown that inhibition of histone deacetylases (HDACs) caused hyperacetylation of centromeres and defective chromosome segregation. SIN3 is a HDAC corepressor that has the ability to mediate HDAC targeting in the repression of promoters. In this study, we have characterized S. pombe sin three corepressors (Pst1p and Pst2p) to investigate whether SIN3-HDAC is required in the regulation of centromeres. We show that only pst1-1 and not pst2Delta cells displayed anaphase defects and thiabendazole sensitivity. pst1-1 cells showed reduced centromeric silencing, increased histone acetylation in centromeric chromatin, and defective centromeric sister chromatid cohesion. The HDAC Clr6p and Pst1p coimmunoprecipitated, and Pst1p colocalized with centromeres, particularly in binucleate cells. These data are consistent with a model in which Pst1p-Clr6p temporally associate with centromeres to carry out the initial deacetylation necessary for subsequent steps in heterochromatin formation.  相似文献   

18.
BACKGROUND: The germline genome of ciliates is extensively rearranged during development of a new somatic macronucleus from the germline micronucleus, a process that follows sexual events. In Paramecium tetraurelia, single-copy internal eliminated sequences (IESs) and multicopy transposons are eliminated, whereas cellular genes are amplified to approximately 800 n. For a subset of IESs, introduction of the IES sequence into the maternal (prezygotic) macronucleus specifically inhibits excision of the homologous IES in the developing zygotic macronucleus. This and other homology-dependent maternal effects have suggested that rearrangement patterns are epigenetically determined by an RNA-mediated, trans-nuclear comparison, involving the RNA interference pathway, of germline and somatic genomes. RESULTS: We report the identification of novel developmentally regulated RNA binding proteins, Nowa1p and Nowa2p, which are required for the survival of sexual progeny. Green fluorescent protein (GFP) fusions show that Nowa1p accumulates into the maternal macronucleus shortly before meiosis of germline micronuclei and is later transported to developing macronuclei. Nowa1p/2p depletion impairs the elimination of transposons and of those IESs that are controlled by maternal effects, confirming the existence of distinct IES classes. CONCLUSIONS: The results indicate that Nowa proteins are essential components of the trans-nuclear-crosstalk mechanism that is responsible for epigenetic programming of genome rearrangements. We discuss implications for the current models of genome scanning in ciliates, a process related to the formation of heterochromatin by RNA interference in other eukaryotes.  相似文献   

19.
Examination of cells at the early stages of herpes simplex virus type 1 infection revealed that the viral immediate-early protein Vmw110 (also known as ICP0) formed discrete punctate accumulations associated with centromeres in both mitotic and interphase cells. The RING finger domain of Vmw110 (but not the C-terminal region) was essential for its localization at centromeres, thus distinguishing the Vmw110 sequences required for centromere association from those required for its localization at other discrete nuclear structures known as ND10, promyelocytic leukaemia (PML) bodies or PODs. We have shown recently that Vmw110 can induce the proteasome-dependent loss of several cellular proteins, including a number of probable SUMO-1-conjugated isoforms of PML, and this results in the disruption of ND10. In this study, we found some striking similarities between the interactions of Vmw110 with ND10 and centromeres. Specifically, centromeric protein CENP-C was lost from centromeres during virus infection in a Vmw110- and proteasome-dependent manner, causing substantial ultrastructural changes in the kinetochore. In consequence, dividing cells either became stalled in mitosis or underwent an unusual cytokinesis resulting in daughter cells with many micronuclei. These results emphasize the importance of CENP-C for mitotic progression and suggest that Vmw110 may be interfering with biochemical mechanisms which are relevant to both centromeres and ND10.  相似文献   

20.
Chromosome segregation during mitosis requires kinetochores, specialized organelles that mediate chromosome attachment to spindle microtubules. We have shown previously that in budding yeast, Plc1p (phosphoinositide-specific phospholipase C) localizes to centromeric loci, associates with the kinetochore proteins Ndc10p and Cep3p, and affects the function of kinetochores. Deletion of PLC1 results in nocodazole sensitivity, mitotic delay, and a higher frequency of chromosome loss. We report here that despite the nocodazole sensitivity of plc1Delta cells, Plc1p is not required for the spindle checkpoint. However, plc1Delta cells require a functional BUB1/BUB3-dependent spindle checkpoint for viability. PLC1 displays strong genetic interactions with genes encoding components of the inner kinetochore, including NDC10, SKP1, MIF2, CEP1, CEP3, and CTF13. Furthermore, plc1Delta cells display alterations in chromatin structure in the core centromere. Chromatin immunoprecipitation experiments indicate that Plc1p localizes to centromeric loci independently of microtubules, and accumulates at the centromeres during G(2)/M stage of cell cycle. These results are consistent with the view that Plc1p affects kinetochore function, possibly by modulating the structure of centromeric chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号