共查询到20条相似文献,搜索用时 0 毫秒
1.
A family of inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) Ca2+ release channels plays a central role in Ca2+ signaling in most cells, but functional correlates of isoform diversity are unclear. Patch-clamp electrophysiology of endogenous type 1 (X-InsP3R-1) and recombinant rat type 3 InsP3R (r-InsP3R-3) channels in the outer membrane of isolated Xenopus oocyte nuclei indicated that enhanced affinity and reduced cooperativity of Ca2+ activation sites of the InsP3-liganded type 3 channel distinguished the two isoforms. Because Ca2+ activation of type 1 channel was the target of regulation by cytoplasmic ATP free acid concentration ([ATP](i)), here we studied the effects of [ATP]i on the dependence of r-InsP(3)R-3 gating on cytoplasmic free Ca2+ concentration ([Ca2+]i. As [ATP]i was increased from 0 to 0.5 mM, maximum r-InsP3R-3 channel open probability (Po) remained unchanged, whereas the half-maximal activating [Ca2+]i and activation Hill coefficient both decreased continuously, from 800 to 77 nM and from 1.6 to 1, respectively, and the half-maximal inhibitory [Ca2+]i was reduced from 115 to 39 microM. These effects were largely due to effects of ATP on the mean closed channel duration. Whereas the r-InsP3R-3 had a substantially higher Po than X-InsP3R-1 in activating [Ca2+]i (< 1 microM) and 0.5 mM ATP, the Ca2+ dependencies of channel gating of the two isoforms became remarkably similar in the absence of ATP. Our results suggest that ATP binding is responsible for conferring distinct gating properties on the two InsP3R channel isoforms. Possible molecular models to account for the distinct regulation by ATP of the Ca2+ activation properties of the two channel isoforms and the physiological implications of these results are discussed. Complex regulation by ATP of the types 1 and 3 InsP3R channel activities may enable cells to generate sophisticated patterns of Ca2+ signals with cytoplasmic ATP as one of the second messengers. 相似文献
2.
Fukatsu K Bannai H Inoue T Mikoshiba K 《Biochemical and biophysical research communications》2006,342(2):573-576
Zhang et al. and Maximov et al. [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056; A. Maximov, T. S. Tang, and I. Bezprozvanny, Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons, Mol. Cell. Neurosci. 22 (2003) 271-283.] reported that 4.1N is a binding partner of inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1), however the binding site of IP(3)R1 differed: the former determined the C-terminal 14 amino acids of the cytoplasmic tail (CTT14aa) as the binding site, while the latter assigned another segment, cytoplasmic tail middle 1 (CTM1). To solve this discrepancy, we performed immunoprecipitation and found that both the segments had binding activity to 4.1N. Both segments also interfered the 4.1N-regulated IP(3)R1 diffusion in neuronal dendrites. However, IP(3)R1 lacking the CTT14aa (IP(3)R1-DeltaCTT14aa) does not bind to 4.1N [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056.] and its diffusion constant is larger than that of IP(3)R1 full-length in neuronal dendrites [K. Fukatsu, H. Bannai, S. Zhang, H. Nakamura, T. Inoue, and K. Mikoshiba, Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites, J. Biol. Chem. 279 (2004) 48976-48982.]. We conclude that both the CTT14aa and CTM1 sequences can bind to 4.1N in peptide fragment forms. However, we propose that the responsible binding site for 4.1N binding in full-length tetramer form of IP(3)R1 is CTT14aa. 相似文献
3.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) is a ligand-gated intracellular Ca(2+) release channel that plays a central role in modulating cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). The fungal metabolite adenophostin A (AdA) is a potent agonist of the InsP(3)R that is structurally different from InsP(3) and elicits distinct calcium signals in cells. We have investigated the effects of AdA and its analogues on single-channel activities of the InsP(3)R in the outer membrane of isolated Xenopus laevis oocyte nuclei. InsP(3)R activated by either AdA or InsP(3) have identical channel conductance properties. Furthermore, AdA, like InsP(3), activates the channel by tuning Ca(2+) inhibition of gating. However, gating of the AdA-liganded InsP(3)R has a critical dependence on cytoplasmic ATP free acid concentration not observed for InsP(3)-liganded channels. Channel gating activated by AdA is indistinguishable from that elicited by InsP(3) in the presence of 0.5 mM ATP, although the functional affinity of the channel is 60-fold higher for AdA. However, in the absence of ATP, gating kinetics of AdA-liganded InsP(3)R were very different. Channel open time was reduced by 50%, resulting in substantially lower maximum open probability than channels activated by AdA in the presence of ATP, or by InsP(3) in the presence or absence of ATP. Also, the higher functional affinity of InsP(3)R for AdA than for InsP(3) is nearly abolished in the absence of ATP. Low affinity AdA analogues furanophostin and ribophostin activated InsP(3)R channels with gating properties similar to those of AdA. These results provide novel insights for interpretations of observed effects of AdA on calcium signaling, including the mechanisms that determine the durations of elementary Ca(2+) release events in cells. Comparisons of single-channel gating kinetics of the InsP(3)R activated by InsP(3), AdA, and its analogues also identify molecular elements in InsP(3)R ligands that contribute to binding and activation of channel gating. 相似文献
4.
High affinity Ins(1,4,5)P3-binding sites of permeabilized hepatocytes are probably the ligand recognition sites of the receptors that mediate the effects of Ins91,4,5)P3 on intracellular Ca2+ mobilization. We have now solubilized these sites from rat liver membranes in the zwitterionic detergent, CHAPS, and shown that the solubilized bind Ins(1,4,5)P3 with an affinity (Kd = 7.26 ± 0.52 nM, Hill coefficient H = 1.05 ± 0.06) similar to that of the sites in native membranes (Kd = 6.02 ± 0.02). ATP and a range of inositol phosphates (Ins(2,4,5)P3 Ins(4,5)P2, and inositol 1,4,5-trisphosphorothioate) also bound with similar affinities to the native and solubilized sites. Solubilization of the liver InsP3 receptor will allow its further characterization, purification, and comparison of its properties with those of InsP3 receptors already purified from cerebellum and smooth muscle. 相似文献
5.
Rapid ligand-regulated gating kinetics of single inositol 1,4,5-trisphosphate receptor Ca2+ release channels
下载免费PDF全文

The ubiquitous inositol 1,4,5-trisphosphate receptor (InsP(3)R) intracellular Ca(2+) release channel is engaged by thousands of plasma membrane receptors to generate Ca(2+) signals in all cells. Understanding how complex Ca(2+) signals are generated has been hindered by a lack of information on the kinetic responses of the channel to its primary ligands, InsP(3) and Ca(2+), which activate and inhibit channel gating. Here, we describe the kinetic responses of single InsP(3)R channels in native endoplasmic reticulum membrane to rapid ligand concentration changes with millisecond resolution, using a new patch-clamp configuration. The kinetics of channel activation and deactivation showed novel Ca(2+) regulation and unexpected ligand cooperativity. The kinetics of Ca(2+)-mediated channel inhibition showed the single-channel bases for fundamental Ca(2+) release events and Ca(2+) release refractory periods. These results provide new insights into the channel regulatory mechanisms that contribute to complex spatial and temporal features of intracellular Ca(2+) signals. 相似文献
6.
Nadif Kasri N Bultynck G Sienaert I Callewaert G Erneux C Missiaen L Parys JB De Smedt H 《Biochimica et biophysica acta》2002,1600(1-2):19-31
Intracellular calcium release is a fundamental signaling mechanism in all eukaryotic cells. The ryanodine receptor (RyR) and inositol 1,4,5-trisphosphate receptor (IP(3)R) are intracellular calcium release channels. Both channels can be regulated by calcium and calmodulin (CaM). In this review we will first discuss the role of calcium as an activator and inactivator of the IP(3)R, concluding that calcium is the most important regulator of the IP(3)R. In the second part we will further focus on the role of CaM as modulator of the IP(3)R, using results of the voltage-dependent Ca(2+) channels and the RyR as reference material. Here we conclude that despite the fact that different CaM-binding sites have been characterized, their function for the IP(3)R remains elusive. In the third part we will discuss the possible functional role of CaM in IP(3)-induced Ca(2+) release (IICR) by direct and indirect mechanisms. Special attention will be given to the Ca(2+)-binding proteins (CaBPs) that were shown to activate the IP(3)R in the absence of IP(3). 相似文献
7.
The inositol 1,4,5-trisphosphate receptor (InsP(3)R) is a tetrameric assembly of conserved subunits that each contains six transmembrane regions (TMRs) localized near the carboxyl terminus. Receptor subunit assembly into a tetramer appears to be a multideterminant process involving an additive contribution of membrane spanning helices and the short cytosolic carboxyl terminus (residues 2590-2749). Previous studies have shown that of the six membrane-spanning regions in each subunit, the 5th and 6th transmembrane regions, and the carboxyl terminus are strong determinants for assembly. The fifth and sixth TMRs contain numerous beta-branched amino acids that may participate in coiled/coil formation via putative leucine zipper motifs. InsP(3)R truncation mutants were expressed in COS-1 cells and analyzed by sucrose density gradient sedimentation and gel filtration for their ability to assemble. Chemical cross-linking with the homobifunctional reagents sDST or DMS of mammalian and bacterially expressed carboxyl-terminal containing receptor fragments reveals that sequences within the carboxyl terminus confer the formation of subunit dimers. A series of InsP(3) receptor carboxyl-terminal fragments and glutathione S-transferase (GST)/InsP(3)R chimeras were expressed in Escherichia coli and used in an in vitro assay to elucidate the minimal sequence responsible for association of the carboxyl termini into dimers. The results presented here indicate that this minimal sequence is approximately 30 residues in length and is localized between residues 2629 and 2654. These residues are highly conserved between the three InsP(3)R isoforms ( approximately 80% identity) as well as the ryanodine receptor ( approximately 40% identity) and suggest that a conserved assembly motif may exist between the two intracellular receptor families. We propose that assembly of the InsP(3) receptor to a tetramer involves intersubunit interactions mediated through both the membrane-spanning regions and residues 2629-2654 of the carboxyl terminus possibly through the formation of a dimer of dimers. 相似文献
8.
A function for tyrosine phosphorylation of type 1 inositol 1,4,5-trisphosphate receptor in lymphocyte activation 总被引:1,自引:0,他引:1
下载免费PDF全文

Sustained elevation of intracellular calcium by Ca2+ release–activated Ca2+ channels is required for lymphocyte activation. Sustained Ca2+ entry requires endoplasmic reticulum (ER) Ca2+ depletion and prolonged activation of inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ release channels. However, a major isoform in lymphocyte ER, IP3R1, is inhibited by elevated levels of cytosolic Ca2+, and the mechanism that enables the prolonged activation of IP3R1 required for lymphocyte activation is unclear. We show that IP3R1 binds to the scaffolding protein linker of activated T cells and colocalizes with the T cell receptor during activation, resulting in persistent phosphorylation of IP3R1 at Tyr353. This phosphorylation increases the sensitivity of the channel to activation by IP3 and renders the channel less sensitive to Ca2+-induced inactivation. Expression of a mutant IP3R1-Y353F channel in lymphocytes causes defective Ca2+ signaling and decreased nuclear factor of activated T cells activation. Thus, tyrosine phosphorylation of IP3R1-Y353 may have an important function in maintaining elevated cytosolic Ca2+ levels during lymphocyte activation. 相似文献
9.
Inositol 1,4,5-trisphosphate receptors (InsP3R) play a key role in intracellular calcium (Ca2+) signaling. Three mammalian InsP3R isoforms--InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals, but the functional differences between the three mammalian InsP3R isoforms are poorly understood. Here we compared single-channel behavior of the recombinant rat InsP3R1, InsP3R2, and InsP3R3 expressed in Sf9 cells, reconstituted into planar lipid bilayers and recorded with 50 mM Ba2+ as a current carrier. We found that: 1), for all three mammalian InsP3R isoforms the size of the unitary current is 1.9 pA and single-channel conductance is 74-80 pS; 2), in optimal recording conditions the maximal single-channel open probability for all three mammalian InsP3R isoforms is in the range 30-40%; 3), in optimal recording conditions the mean open dwell time for all three mammalian InsP3R isoforms is 7-8 ms, the mean closed dwell time is approximately 10 ms; 4), InsP3R2 has the highest apparent affinity for InsP(3) (0.10 microM), followed by InsP3R1 (0.27 microM), and then by InsP3R3 (0.40 microM); 5), InsP3R1 has a high-affinity (0.13 mM) ATP modulatory site, InsP3R2 gating is ATP independent, and InsP3R3 has a low-affinity (2 mM) ATP modulatory site; 6), ATP modulates InsP3R1 gating in a noncooperative manner (n(Hill) = 1.3); 7), ATP modulates InsP3R3 gating in a highly cooperative manner (n(Hill) = 4.1). Obtained results provide novel information about functional properties of mammalian InsP3R isoforms. 相似文献
10.
Inositol 1,4,5-trisphosphate (InsP(3)) mobilizes intracellular Ca(2+) by binding to its receptor (InsP(3)R), an endoplasmic reticulum-localized Ca(2+) release channel. Patch clamp electrophysiology of Xenopus oocyte nuclei was used to study the effects of cytoplasmic ATP concentration on the cytoplasmic Ca(2+) ([Ca(2+)](i)) dependence of single type 1 InsP(3)R channels in native endoplasmic reticulum membrane. Cytoplasmic ATP free-acid ([ATP](i)), but not the MgATP complex, activated gating of the InsP(3)-liganded InsP(3)R, by stabilizing open channel state(s) and destabilizing the closed state(s). Activation was associated with a reduction of the half-maximal activating [Ca(2+)](i) from 500 +/- 50 nM in 0 [ATP](i) to 29 +/- 4 nM in 9.5 mM [ATP](i), with apparent ATP affinity = 0.27 +/- 0.04 mM, similar to in vivo concentrations. In contrast, ATP was without effect on maximum open probability or the Hill coefficient for Ca(2+) activation. Thus, ATP enhances gating of the InsP(3)R by allosteric regulation of the Ca(2+) sensitivity of the Ca(2+) activation sites of the channel. By regulating the Ca(2+)-induced Ca(2+) release properties of the InsP(3)R, ATP may play an important role in shaping cytoplasmic Ca(2+) signals, possibly linking cell metabolic state to important Ca(2+)-dependent processes. 相似文献
11.
G A Mignery C L Newton B T Archer T C Südhof 《The Journal of biological chemistry》1990,265(21):12679-12685
The complete primary structure of the inositol 1,4,5-trisphosphate receptor from rat brain was elucidated using a series of overlapping cDNA clones. Two different sets of clones that either contain or lack a 45-nucleotide sequence in the amino-terminal third of the protein were isolated, suggesting a differential splicing event that results in the biosynthesis of either a 2734- or 2749-amino acid receptor protein. Hydrophobicity analysis demonstrates the presence of a cluster of hydrophobic sequences in the carboxyl-terminal third of the protein that probably comprise eight transmembrane regions and that may form the calcium channel intrinsic to the receptor. The receptor was universally expressed at low levels in all tissues and cultured cells tested. Transfection of a full-length expression construct of the inositol 1,4,5-trisphosphate receptor into COS cells resulted in the biosynthesis of a 260-kDa protein that bound inositol 1,4,5-trisphosphate and formed high molecular weight complexes similar to the native receptor as analyzed by sucrose gradient centrifugations. On the other hand, the protein product synthesized by a mutant receptor construct in which the amino-terminal 418 amino acids were deleted failed to bind inositol 1,4,5-trisphosphate. The mutant receptor still formed high molecular weight complexes, suggesting that it folded normally and that the amino-terminal sequences of the receptor are part of the ligand binding domain. 相似文献
12.
Molecular characterization of the inositol 1,4,5-trisphosphate receptor pore-forming segment 总被引:1,自引:0,他引:1
Schug ZT da Fonseca PC Bhanumathy CD Wagner L Zhang X Bailey B Morris EP Yule DI Joseph SK 《The Journal of biological chemistry》2008,283(5):2939-2948
Specific residues in the putative pore helix, selectivity filter, and S6 transmembrane helix of the inositol 1,4,5-trisphosphate receptor were mutated in order to examine their effects on channel function. Mutation of 5 of 8 highly conserved residues in the pore helix/selectivity filter region inactivated the channel (C2533A, G2541A, G2545A, G2546A, and G2547A). Of the remaining three mutants, C2527A and R2543A were partially active and G2549A behaved like wild type receptor. Mutation of a putative glycine hinge residue in the S6 helix (G2586A) or a putative gating residue at the cytosolic end of S6 helix (F2592A) had minimal effects on function, although channel function was inactivated by G2586P and F2592D mutations. The mutagenesis data are interpreted in the context of a structural homology model of the inositol 1,4,5-trisphosphate receptor. 相似文献
13.
Allosteric binding of calcium ion (Ca2+) to inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) controls channel gating within IP3R. Here, we present biochemical and electron microscopic evidence of Ca2+-sensitive structural changes in the three-dimensional structure of type 1 IP3R (IP3R1). Low concentrations of Ca2+ and high concentrations of Sr2+ and Ba2+ were shown to be effective for the limited proteolysis of IP3R1, but Mg2+ had no effect on the proteolysis. The electron microscopy and the limited proteolysis consistently demonstrated that the effective concentration of Ca2+ for conformational changes in IP3R1 was <10(-7) m and that the IP3 scarcely affected the conformational states. The structure of IP3R1 without Ca2+, as reconstructed by three-dimensional electron microscopy, had a "mushroom-like" appearance consisting of a large square-shaped head and a small channel domain linked by four thin bridges. The projection image of the "head-to-head" assembly comprising two particles confirmed the mushroom-like side view. The "windmill-like" form of IP3R1 with Ca2+ also contains the four bridges connecting from the IP3-binding domain toward the channel domain. These data suggest that the Ca2+-specific conformational change structurally regulates the IP3-triggered channel opening within IP3R1. 相似文献
14.
Conclusion In this review, we have described the functional properties and regulation of the InsP3R. Not all aspects of InsP3R function and regulation were covered, the main focus was on the most recent and physiologically important data. Information about the structure, heterogeneity, functional properties, and regulation of the InsP3R is useful for understanding the spatiotemporal aspects of Ca signaling. The combination of biochemical, biophysical and molecular biological techniques has revealed the intricacies of the InsP3R over the past decade. However, questions about the functional differences between various isoforms and splice variants of the InsP3R, the structural determinants responsible for regulation of InsP3R by Ca and ATP, the functional effects of InsP3R phosphorylation and many others remain to be elucidated. Future investigations can be expected to provide answers to these important questions.We thank S. Bezprozvannaya for expert technical assistance. This work was supported by National Institutes of Health grants HL 33026 and GM 39029, and a Grant-in-Aid from the Patrick and Catherine Weldon Donaghue Medical Research Foundation. 相似文献
15.
The inositol 1,4,5-trisphosphate receptors 总被引:8,自引:0,他引:8
Bezprozvanny I 《Cell calcium》2005,38(3-4):261-272
The inositol (1,4,5)-trisphosphate receptors (InsP3R) are the intracellular calcium (Ca2+) release channels that play a key role in Ca2+ signaling in cells. Three InsP3R isoforms-InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals. A single InsP3R isoform is expressed in Drosophila melanogaster (DmInsP3R) and Caenorhabditis elegans (CeInsP3R). The progress made during last decade towards understanding the function and the properties of the InsP3R is briefly reviewed in this chapter. The main emphasis is on studies that revealed structural determinants responsible for the ligand recognition by the InsP3R, ion permeability of the InsP3R, modulation of the InsP3R by cytosolic Ca2+, ATP and PKA phosphorylation and on the recently identified InsP3R-binding partners. The main focus is on the InsP3R1, but the recent information about properties of other InsP3R isoforms is also discussed. 相似文献
16.
Fertilization in mammalian eggs is characterized by the presence of intracellular calcium ([Ca(2+)]i) oscillations. In mouse eggs, these oscillations cease after a variable period of time and this is accompanied by a decrease in inositol 1,4,5-trisphosphate receptor (IP3R) responsiveness and down-regulation of the IP3R type 1 (IP3R-1). To investigate the signaling pathway responsible for inducing IP3R-1 down-regulation during fertilization, mouse eggs were exposed to or injected with several Ca(2+)-releasing agonists and the amounts of IP3R-1 immunoreactivity evaluated by Western blotting. Exposure to ethanol or ionomycin, which induce a single [Ca(2+)]i rise, failed to signal down-regulation of IP3R-1. However, [Ca(2+)]i oscillations induced by injection of boar sperm fractions (SF), which presumably stimulate production of IP3, or adenophostin A, an IP3R agonist, both induced down-regulation of IP3R-1 of a magnitude similar to or greater than that observed after fertilization. Exposure to thimerosal, an oxidizing agent that modifies the IP3R without stimulating production of IP3, also initiated down-regulation of IP3R-1, although oscillations initiated by SrCl(2) failed to evoke down-regulation of IP3R-1. The degradation of IP3R-1 in mouse eggs appears to be mediated by the proteasome pathway because it was inhibited by preincubation with lactacystin, a very specific proteasome inhibitor. We therefore suggest that persistent stimulation of the phosphoinositide pathway in mouse eggs by the sperm during fertilization or by injection of SF leads to down-regulation of the IP3R-1. 相似文献
17.
Inositol 1,4,5-trisphosphate receptors (InsP3R) are a family of ubiquitously expressed intracellular Ca2+ channels. Isoform-specific properties of the three family members may play a prominent role in defining the rich diversity of the spatial and temporal characteristics of intracellular Ca2+ signals. Studying the properties of the particular family members is complicated because individual receptor isoforms are typically never expressed in isolation. In this article, we discuss strategies for studying Ca2+ release through individual InsP3R family members with particular reference to methods applicable following expression of recombinant InsP3R and mutant constructs in the DT40-3KO cell line, an unambiguously null InsP3R expression system. 相似文献
18.
A mathematical account is given of the processes governing the time courses of calcium ions (Ca2+), inositol 1,4,5-trisphosphate (IP(3)) and phosphatidylinositol 4,5-bisphosphate (PIP(2)) in single cells following the application of external agonist to metabotropic receptors. A model is constructed that incorporates the regulation of metabotropic receptor activity, the G-protein cascade and the Ca2+ dynamics in the cytosol. It is subsequently used to reproduce observations on the extent of desensitization and sequestration of the P(2)Y(2) receptor following its activation by uridine triphosphate (UTP). The theory predicts the dependence on agonist concentration of the change in the number of receptors in the membrane as well as the time course of disappearance of receptors from the plasmalemma, upon exposure to agonist. In addition, the extent of activation and desensitization of the receptor, using the calcium transients in cells initiated by exposure to agonist, is also predicted. Model predictions show the significance of membrane PIP(2) depletion and resupply on the time course of IP(3) and Ca2+ levels. Results of the modelling also reveal the importance of receptor recycling and PIP(2) resupply for maintaining Ca2+ and IP(3) levels during sustained application of agonist. 相似文献
19.
Functional properties of the Drosophila melanogaster inositol 1,4,5-trisphosphate receptor mutants
下载免费PDF全文

Srikanth S Wang Z Tu H Nair S Mathew MK Hasan G Bezprozvanny I 《Biophysical journal》2004,86(6):3634-3646
The inositol (1,4,5)-trisphosphate receptor (InsP(3)R) is an intracellular calcium (Ca(2+)) release channel that plays a crucial role in cell signaling. In Drosophila melanogaster a single InsP(3)R gene (itpr) encodes a protein (DmInsP(3)R) that is approximately 60% conserved with mammalian InsP(3)Rs. A number of itpr mutant alleles have been identified in genetic screens and studied for their effect on development and physiology. However, the functional properties of wild-type or mutant DmInsP(3)Rs have never been described. Here we use the planar lipid bilayer reconstitution technique to describe single-channel properties of embryonic and adult head DmInsP(3)R splice variants. The three mutants chosen in this study reside in each of the three structural domains of the DmInsP(3)R-the amino-terminal ligand binding domain (ug3), the middle-coupling domain (wc703), and the channel-forming region (ka901). We discovered that 1), the major functional properties of DmInsP(3)R (conductance, gating, and sensitivity to InsP(3) and Ca(2+)) are remarkably conserved with the mammalian InsP(3)R1; 2), single-channel conductance of the adult head DmInsP(3)R isoform is 89 pS and the embryonic DmInsP(3)R isoform is 70 pS; 3), ug3 mutation affects sensitivity of the DmInsP(3)Rs to activation by InsP(3), but not their InsP(3)-binding properties; 4), wc703 channels have increased sensitivity to modulation by Ca(2+); and 5), homomeric ka901 channels are not functional. We correlated the results obtained in planar lipid bilayer experiments with measurements of InsP(3)-induced Ca(2+) fluxes in microsomes isolated from wild-type and heterozygous itpr mutants. Our study validates the use of D. melanogaster as an appropriate model for InsP(3)R structure-function studies and provides novel insights into the fundamental mechanisms of the InsP(3)R function. 相似文献
20.
Bimboese P Gibson CJ Schmidt S Xiang W Ehrlich BE 《The Journal of biological chemistry》2011,286(18):15688-15697
The inositol 1,4,5-trisphosphate receptor (InsP(3)R), an intracellular calcium channel, has three isoforms with >65% sequence homology, yet the isoforms differ in their function and regulation by post-translational modifications. We showed previously that InsP(3)R-1 is functionally modified by O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) (Rengifo, J., Gibson, C. J., Winkler, E., Collin, T., and Ehrlich, B. E. (2007) J. Neurosci. 27, 13813-13821). We now report the effect of O-GlcNAcylation on InsP(3)R-2 and InsP(3)R-3. Analysis of AR4-2J cells, a rat pancreatoma cell line expressing predominantly InsP(3)R-2, showed no detectable O-GlcNAcylation of InsP(3)R-2 and no significant functional changes despite the presence of the enzymes for addition (O-β-N-acetylglucosaminyltransferase) and removal (O-β-N-acetylglucosaminidase) of the monosaccharide. In contrast, InsP(3)R-3 in Mz-ChA-1 cells, a human cholangiocarcinoma cell line expressing predominantly InsP(3)R-3, was functionally modified by O-GlcNAcylation. Interestingly, the functional impact of O-GlcNAcylation on the InsP(3)R-3 channel was opposite the effect measured with InsP(3)R-1. Addition of O-GlcNAc by O-β-N-acetylglucosaminyltransferase increased InsP(3)R-3 single channel open probability. Incubation of Mz-ChA-1 cells in hyperglycemic medium caused an increase in the InsP(3)-dependent calcium release from the endoplasmic reticulum. The dynamic and inducible nature of O-GlcNAcylation and the InsP(3)R isoform specificity suggest that this form of modification of InsP(3)R and subsequent changes in intracellular calcium transients are important in physiological and pathophysiological processes. 相似文献