首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of inositol 1,4,5-trisphosphate receptors (IP(3)R) in caspase-3 activation and cell death was investigated in DT40 chicken B-lymphocytes stably expressing various IP(3)R constructs. Both full-length type-I IP(3)R and a truncated construct corresponding to the caspase-3 cleaved "channel-only" fragment were able to support staurosporine (STS)-induced caspase-3 activation and cell death even when the IP(3)R construct harbored a mutation that inactivates the pore of the Ca(2+) channel (D2550A). However, a full-length wild-type IP(3)R did not promote caspase-3 activation when the 159-amino acid cytosol-exposed C-terminal tail was deleted. STS caused an increase in cytosolic free Ca(2+) in DT40 cells expressing wild-type or pore-dead IP(3)R mutants. However, in the latter case all the Ca(2+) increase originated from Ca(2+) entry across the plasma membrane. Caspase-3 activation of pore-dead DT40 cells was also more sensitive to extracellular Ca(2+) chelation when compared with wild-type cells. STS-mediated release of cytochrome c into the cytosol and mitochondrial membrane potential depolarization could also be observed in DT40 cells lacking IP(3)Rs or containing the pore-dead mutant. We conclude that nonfunctional IP(3)Rs can sustain apoptosis in DT40 lymphocytes, because they facilitate Ca(2+) entry mechanisms across the plasma membrane. Although the intrinsic ion-channel function of IP(3)Rs is dispensable for apoptosis induced by STS, the C-terminal tail of IP(3)Rs appears to be essential, possibly reflecting key protein-protein interactions with this domain.  相似文献   

2.
We tested the hypothesis that part of the lumenal amino acid segment between the two most C-terminal membrane segments of the skeletal muscle ryanodine receptor (RyR1) is important for channel activity and conductance. Eleven mutants were generated and expressed in HEK293 cells focusing on amino acid residue I4897 homologous to the selectivity filter of K(+) channels and six other residues in the M3-M4 lumenal loop. Mutations of amino acids not absolutely conserved in RyRs and IP(3)Rs (D4903A and D4907A) showed cellular Ca(2+) release in response to caffeine, Ca(2+)-dependent [(3)H]ryanodine binding, and single-channel K(+) and Ca(2+) conductances not significantly different from wild-type RyR1. Mutants with an I4897 to A, L, or V or D4917 to A substitution showed a decreased single-channel conductance, loss of high-affinity [(3)H]ryanodine binding and regulation by Ca(2+), and an altered caffeine-induced Ca(2+) release in intact cells. Mutant channels with amino acid residue substitutions that are identical in the RyR and IP(3)R families (D4899A, D4899R, and R4913E) exhibited a decreased K(+) conductance and showed a loss of high-affinity [(3)H]ryanodine binding and loss of single-channel pharmacology but maintained their response to caffeine in a cellular assay. Two mutations (G4894A and D4899N) were able to maintain pharmacological regulation both in intact cells and in vitro but had lower single-channel K(+) and Ca(2+) conductances than the wild-type channel. The results support the hypothesis that amino acid residues in the lumenal loop region between the two most C-terminal membrane segments constitute a part of the ion-conducting pore of RyR1.  相似文献   

3.
We tested the hypothesis that key residues in a putative intraluminal loop contribute to determination of ion permeation through the intracellular Ca(2+) release channel (inositol 1,4,5-trisphosphate receptors (IP(3)Rs)) that is gated by the second messenger inositol 1,4,5-trisphosphate (IP(3)). To accomplish this, we mutated residues within the putative pore forming region of the channel and analyzed the functional properties of mutant channels using a (45)Ca(2+) flux assay and single channel electrophysiological analyses. Two IP(3)R mutations, V2548I and D2550E, retained the ability to release (45)Ca(2+) in response to IP(3). When analyzed at the single channel level; both recombinant channels had IP(3)-dependent open probabilities similar to those observed in wild-type channels. The mutation V2548I resulted in channels that exhibited a larger K(+) conductance (489 +/- 13 picosiemens (pS) for V2548I versus 364 +/- 5 pS for wild-type), but retained a Ca(2+) selectivity similar to wild-type channels (P(Ca(2+)):P(K(+)) approximately 4:1). Conversely, D2550E channels were nonselective for Ca(2+) over K(+) (P(Ca(2+)):P(K(+)) approximately 0.6:1), while the K(+) conductance was effectively unchanged (391 +/- 4 pS). These results suggest that amino acid residues Val(2548) and Asp(2550) contribute to the ion conduction pathway. We propose that the pore of IP(3)R channels has two distinct sites that control monovalent cation permeation (Val(2548)) and Ca(2+) selectivity (Asp(2550)).  相似文献   

4.
BACKGROUND INFORMATION: The IP(3)R (inositol 1,4,5-trisphosphate receptor) is a tetrameric channel that accounts for a large part of the intracellular Ca(2+) release in virtually all cell types. We have previously demonstrated that caspase-3-mediated cleavage of IP(3)R1 during cell death generates a C-terminal fragment of 95 kDa comprising the complete channel domain. Expression of this truncated IP(3)R increases the cellular sensitivity to apoptotic stimuli, and it was postulated to be a constitutively active channel. RESULTS: In the present study, we demonstrate that expression of the caspase-3-cleaved C-terminus of IP(3)R1 increased the rate of thapsigargin-mediated Ca(2+) leak and decreased the rate of Ca(2+) uptake into the ER (endoplasmic reticulum), although it was not sufficient by itself to deplete intracellular Ca(2+) stores. We detected the truncated IP(3)R1 in different cell types after a challenge with apoptotic stimuli, as well as in aged mouse oocytes. Injection of mRNA corresponding to the truncated IP(3)R1 blocked sperm factor-induced Ca(2+) oscillations and induced an apoptotic phenotype. CONCLUSIONS: In the present study, we show that caspase-3-mediated truncation of IP(3)R1 enhanced the Ca(2+) leak from the ER. We suggest a model in which, in normal conditions, the increased Ca(2+) leak is largely compensated by enhanced Ca(2+)-uptake activity, whereas in situations where the cellular metabolism is compromised, as occurring in aging oocytes, the Ca(2+) leak acts as a feed-forward mechanism to divert the cell into apoptosis.  相似文献   

5.
Type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R1) is a widely expressed intracellular calcium-release channel found in many cell types. The operation of IP(3)R1 is regulated through phosphorylation by multiple protein kinases. Extracellular signal-regulated kinase (ERK) has been found involved in calcium signaling in distinct cell types, but the underlying mechanisms remain unclear. Here, we present evidence that ERK1/2 and IP(3)R1 bind together through an ERK binding motif in mouse cerebellum in vivo as well as in vitro. ERK-phosphorylating serines (Ser 436) was identified in mouse IP(3)R1 and Ser 436 phosphorylation had a suppressive effect on IP(3) binding to the recombinant N-terminal 604-amino acid residues (N604). Moreover, phosphorylation of Ser 436 in R(224-604) evidently enhance its interaction with the N-terminal "suppressor" region (N223). At last, our data showed that Ser 436 phosphorylation in IP(3)R1 decreased Ca(2+) releasing through IP(3)R1 channels.  相似文献   

6.
Activation of TRPC3 channels is concurrent with inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)-mediated intracellular Ca(2+) release and associated with phosphatidylinositol 4,5-bisphosphate hydrolysis and recruitment to the plasma membrane. Here we report that interaction of TRPC3 with receptor for activated C-kinase-1 (RACK1) not only determines plasma membrane localization of the channel but also the interaction of IP(3)R with RACK1 and IP(3)-dependent intracellular Ca(2+) release. We show that TRPC3 interacts with RACK1 via N-terminal residues Glu-232, Asp-233, Glu-240, and Glu-244. Carbachol (CCh) stimulation of HEK293 cells expressing wild type TRPC3 induced recruitment of a ternary TRPC3-RACK1-IP(3)R complex and increased surface expression of TRPC3 and Ca(2+) entry. Mutation of the putative RACK1 binding sequence in TRPC3 disrupted plasma membrane localization of the channel. CCh-stimulated recruitment of TRPC3-RACK1-IP(3)R complex as well as increased surface expression of TRPC3 and receptor-operated Ca(2+) entry were also attenuated. Importantly, CCh-induced intracellular Ca(2+) release was significantly reduced as was RACK1-IP(3)R association without any change in thapsigargin-stimulated Ca(2+) release and entry. Knockdown of endogenous TRPC3 also decreased RACK1-IP(3)R association and decreased CCh-stimulated Ca(2+) entry. Furthermore, an oscillatory pattern of CCh-stimulated intracellular Ca(2+) release was seen in these cells compared with the more sustained pattern seen in control cells. Similar oscillatory pattern of Ca(2+) release was seen after CCh stimulation of cells expressing the TRPC3 mutant. Together these data demonstrate a novel role for TRPC3 in regulation of IP(3)R function. We suggest TRPC3 controls agonist-stimulated intracellular Ca(2+) release by mediating interaction between IP(3)R and RACK1.  相似文献   

7.
The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) Ca(2+) channel plays pivotal roles in many aspects of physiological and pathological events. It was previously reported that IP(3)R forms clusters on the endoplasmic reticulum when cytosolic Ca(2+) concentration ([Ca(2+)](C)) is elevated. However, the molecular mechanism of IP(3)R clustering remains largely unknown, and thus its physiological significance is far from clear. In this study we found that the time course of clustering of green fluorescent protein-tagged IP(3)R type 1 (GFP-IP(3)R1), evoked by IP(3)-generating agonists, did not correlate with [Ca(2+)](C) but seemed compatible with cytoplasmic IP(3) concentration. IP(3) production alone induced GFP-IP(3)R1 clustering in the absence of a significant increase in [Ca(2+)](C) but elevated [Ca(2+)](C) without IP(3) production did not. Moreover IP(3)R1 mutants that do not undergo an IP(3)-induced conformational change failed to form clusters. Thus, IP(3)R clustering is induced by its IP(3)-induced conformational change to the open state. We also found that GFP-IP(3)R1 clusters colocalized with ERp44, a luminal protein of endoplasmic reticulum that inhibits its channel activity. This is the first example of ligand-induced clustering of a ligand-gated channel protein.  相似文献   

8.
IP(3) receptors: the search for structure   总被引:4,自引:0,他引:4  
Inositol (1,4,5)-trisphosphate receptors (IP(3)R) are intracellular Ca(2+) channels that are regulated by Ca(2+) and IP(3), and are modulated by many additional signals. They thereby allow both receptors that stimulate IP(3) formation and Ca(2+) to control release of Ca(2+) from intracellular stores. IP(3)Rs share many features with their close relatives, ryanodine receptors; each provides insight into the structure and function of the other. The structural basis of IP(3)R behaviour is beginning to emerge from intermediate-resolution structures of the complete IP(3)R, a 2.2-A structure of the IP(3)-binding core and comparisons with the pore structures of other tetrameric cation channels. The binding of IP(3) to a site towards the N-terminal of each IP(3)R subunit promotes binding of Ca(2+). This destabilizes an inhibitory interaction between N-terminal residues and a C-terminal 'gatekeeper' sequence, enabling the pore to open.  相似文献   

9.
Human neuroblastoma SH-SY5Y cells, predominantly expressing type 1 inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), were stably transfected with IP(3)R type 3 (IP(3)R3) cDNA. Immunocytochemistry experiments showed a homogeneous cytoplasmic distribution of type 3 IP(3)Rs in transfected and selected high expression cloned cells. Using confocal Ca(2+) imaging, carbachol (CCh)-induced Ca(2+) release signals were studied. Low CCh concentrations (< or = 750 nM) evoked baseline Ca(2+) oscillations. Transfected cells displayed a higher CCh responsiveness than control or cloned cells. Ca(2+) responses varied between fast, large Ca(2+) spikes and slow, small Ca(2+) humps, while in the clone only Ca(2+) humps were observed. Ca(2+) humps in the transfected cells were associated with a high expression level of IP(3)R3. At high CCh concentrations (10 microM) Ca(2+) transients in transfected and cloned cells were similar to those in control cells. In the clone exogenous IP(3)R3 lacked the C-terminal channel domain but IP(3)-binding capacity was preserved. Transfected cells mainly expressed intact type 3 IP(3)Rs but some protein degradation was also observed.We conclude that in transfected cells expression of functional type 3 IP(3)Rs causes an apparent higher affinity for IP(3). In the clone, the presence of degraded receptors leads to an efficient cellular IP(3) buffer and attenuated IP(3)-evoked Ca(2+) release.  相似文献   

10.
Intracellular inositol 1,4,5-trisphosphate receptors (IP(3)Rs) form tetrameric Ca2+-release channels that are crucial for Ca2+ signalling in many eukaryotic cells. IP(3)R subunits contain an N-terminal, cytoplasmic, ligand binding domain linked by a modulatory domain to a channel-forming, hydrophobic C-terminal domain. We assembled and sequenced cDNAs encoding the SI-/SII+/SIII+ splice variant of the human brain type I IP(3)R, and functionally expressed the full-length receptor, and a C-terminally truncated receptor lacking the final 20% of the protein, in mammalian and insect cells. Both proteins were insoluble, consistent with in vivo immunofluorescence and ligand binding studies. This contrasted with the behaviour of recombinant FIKBP12 (a soluble control protein). The truncated receptor also fractionated with the "membrane" pellet after alkaline carbonate treatment. We conclude that the human type I IP(3)R forms high MW aggregates or complexes in cells when expressed without the C-terminal hydrophobic domain. This behaviour should be considered when expressing and refolding "soluble" human type I IP(3)R domains for structural studies.  相似文献   

11.
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are intracellular channel proteins that mediate Ca(2+) release from the endoplasmic reticulum (ER) and are involved in many biological processes and diseases. IP(3)Rs are differentially regulated by a variety of cytosolic proteins, but their regulation by ER lumenal protein(s) remains largely unexplored. In this study, we found that ERp44, an ER lumenal protein of the thioredoxin family, directly interacts with the third lumenal loop of IP(3)R type 1 (IP(3)R1) and that the interaction is dependent on pH, Ca(2+) concentration, and redox state: the presence of free cysteine residues in the loop is required. Ca(2+)-imaging experiments and single-channel recording of IP(3)R1 activity with a planar lipid bilayer system demonstrated that IP(3)R1 is directly inhibited by ERp44. Thus, ERp44 senses the environment in the ER lumen and modulates IP(3)R1 activity accordingly, which should in turn contribute to regulating both intralumenal conditions and the complex patterns of cytosolic Ca(2+) concentrations.  相似文献   

12.
Ca2+ exerts both a stimulatory and inhibitory effect on type-I IP3R channel activity. However, the structural determinants of Ca2+ sensing in IP3Rs are not fully understood. Previous studies by others have identified eight domains of the type-I IP3R that bind 45Ca2+ when expressed as GST-fusion proteins. We have mutated six highly conserved acidic residues within the second of these domains (aa378-450) in the full-length IP3R and measured the Ca2+ regulation of IP3-mediated Ca2+ release in COS-7 cells. 45Ca2+ flux assays measured with a maximal [IP3] (1 microM) indicate that one of the mutants retained a Ca2+ sensitivity that was not significantly different from control (E411Q), three of the mutants show an enhanced Ca2+ inhibition (D426N, E428Q and E439Q) and two of the mutants were relatively insensitive to Ca2+ inhibition (D442N and D444N). IP3 dose-response relationships indicated that the sensitivity to Ca2+ inhibition and affinity for IP3 were correlated for three of the constructs. Other mutants with enhanced IP3 sensitivity (e.g. R441Q and a type-II/I IP3R chimera) were also less sensitive to Ca2+ inhibition. We conclude that the acidic residues within the aa378-450 segment are unlikely to represent a single functional Ca2+ binding domain and do not contribute to Ca2+ activation of the receptor. The different effects of the mutations may be related to their location within two clusters of acidic residues identified in the crystal structure of the ligand-binding domain [I. Bosanac, J.R. Alattia, T.K. Mal, et al., Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand, Nature 420 (2002) 696-700]. The data support the view that all IP3R isoforms may display a range of Ca2+ sensitivities that are determined by multiple sites within the protein and markedly influenced by the affinity of the receptor for IP3.  相似文献   

13.
Three subtypes of inositol 1,4,5-trisphosphate receptor (IP(3)R1, IP(3)R2, and IP(3)R3) Ca(2+) release channel share basic properties but differ in terms of regulation. To what extent they contribute to complex Ca(2+) signaling, such as Ca(2+) oscillations, remains largely unknown. Here we show that HeLa cells express comparable amounts of IP(3)R1 and IP(3)R3, but knockdown by RNA interference of each subtype results in dramatically distinct Ca(2+) signaling patterns. Knockdown of IP(3)R1 significantly decreases total Ca(2+) signals and terminates Ca(2+) oscillations. Conversely, knockdown of IP(3)R3 leads to more robust and long lasting Ca(2+) oscillations than in controls. Effects of IP(3)R3 knockdown are surprisingly similar in COS-7 cells that predominantly (>90% of total IP(3)R) express IP(3)R3, suggesting that IP(3)R3 functions as an anti-Ca(2+)-oscillatory unit without contributing to peak amplitude of Ca(2+) signals, irrespective of its relative expression level. Therefore, differential expression of the IP(3)R subtype is critical for various forms of Ca(2+) signaling, and, particularly, IP(3)R1 and IP(3)R3 have opposite roles in generating Ca(2+) oscillations.  相似文献   

14.
We isolated cDNAs encoding type 2 and type 3 inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)R2 and IP(3)R3, respectively) from mouse lung and found a novel alternative splicing segment, SI(m2), at 176-208 of IP(3)R2. The long form (IP(3)R2 SI(m2)(+)) was dominant, but the short form (IP(3)R2 SI(m2)(-)) was detected in all tissues examined. IP(3)R2 SI(m2)(-) has neither IP(3) binding activity nor Ca(2+) releasing activity. In addition to its reticular distribution, IP(3)R2 SI(m2)(+) is present in the form of clusters in the endoplasmic reticulum of resting COS-7 cells, and after ATP or Ca(2+) ionophore stimulation, most of the IP(3)R2 SI(m2)(+) is in clusters. IP(3)R3 is localized uniformly on the endoplasmic reticulum of resting cells and forms clusters after ATP or Ca(2+) ionophore stimulation. IP(3)R2 SI(m2)(-) does not form clusters in either resting or stimulated cells. IP(3) binding-deficient site-directed mutants of IP(3)R2 SI(m2)(+) and IP(3)R3 fail to form clusters, indicating that IP(3) binding is involved in the cluster formation by these isoforms. Coexpression of IP(3)R2 SI(m2)(-) prevents stimulus-induced IP(3)R clustering, suggesting that IP(3)R2 SI(m2)(-) functions as a negative coordinator of stimulus-induced IP(3)R clustering. Expression of IP(3)R2 SI(m2)(-) in CHO-K1 cells significantly reduced ATP-induced Ca(2+) entry, but not Ca(2+) release, suggesting that the novel splice variant of IP(3)R2 specifically influences the dynamics of the sustained phase of Ca(2+) signals.  相似文献   

15.
Modulation on the duration of intracellular Ca(2+) transients is essential for B-cell activation. We have previously shown that extracellular-signal-regulated kinase (ERK) can phosphorylate inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1) at serine 436 and regulate its calcium channel activity. Here we investigate the potential physiological interaction between ERK and IP(3)R1 using chicken DT40 B-cell line in which different mutants are expressed. The interaction between ERK and IP(3)R1 is confirmed by co-immunoprecipitation and fluorescence resonance energy transfer (FRET) assays. This constitutive interaction is independent of either ERK kinase activation or IP(3)R1 phosphorylation status. Back phosphorylation analysis further shows that type 1 IP(3)R (IP(3)R1) is phosphorylated by ERK in anti-IgM-activated DT40 cells. Finally, our data show that the phosphorylation of Ser 436 in the IP(3)-binding domain of IP(3)R1 leads to less Ca(2+) release from endoplasmic reticulum (ER) microsomes and accelerates the declining of calcium increase in DT40 cells in response to anti-IgM stimulation.  相似文献   

16.
Allosteric binding of calcium ion (Ca2+) to inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) controls channel gating within IP3R. Here, we present biochemical and electron microscopic evidence of Ca2+-sensitive structural changes in the three-dimensional structure of type 1 IP3R (IP3R1). Low concentrations of Ca2+ and high concentrations of Sr2+ and Ba2+ were shown to be effective for the limited proteolysis of IP3R1, but Mg2+ had no effect on the proteolysis. The electron microscopy and the limited proteolysis consistently demonstrated that the effective concentration of Ca2+ for conformational changes in IP3R1 was <10(-7) m and that the IP3 scarcely affected the conformational states. The structure of IP3R1 without Ca2+, as reconstructed by three-dimensional electron microscopy, had a "mushroom-like" appearance consisting of a large square-shaped head and a small channel domain linked by four thin bridges. The projection image of the "head-to-head" assembly comprising two particles confirmed the mushroom-like side view. The "windmill-like" form of IP3R1 with Ca2+ also contains the four bridges connecting from the IP3-binding domain toward the channel domain. These data suggest that the Ca2+-specific conformational change structurally regulates the IP3-triggered channel opening within IP3R1.  相似文献   

17.
The inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) are IP(3)-gated Ca(2+) channels on intracellular Ca(2+) stores. Herein, we report a novel protein, termed IRBIT (IP(3)R binding protein released with inositol 1,4,5-trisphosphate), which interacts with type 1 IP(3)R (IP(3)R1) and was released upon IP(3) binding to IP(3)R1. IRBIT was purified from a high salt extract of crude rat brain microsomes with IP(3) elution using an affinity column with the huge immobilized N-terminal cytoplasmic region of IP(3)R1 (residues 1-2217). IRBIT, consisting of 530 amino acids, has a domain homologous to S-adenosylhomocysteine hydrolase in the C-terminal and in the N-terminal, a 104 amino acid appendage containing multiple potential phosphorylation sites. In vitro binding experiments showed the N-terminal region of IRBIT to be essential for interaction, and the IRBIT binding region of IP(3)R1 was mapped to the IP(3) binding core. IP(3) dissociated IRBIT from IP(3)R1 with an EC(50) of approximately 0.5 microm, i.e. it was 50 times more potent than other inositol polyphosphates. Moreover, alkaline phosphatase treatment abolished the interaction, suggesting that the interaction was dualistically regulated by IP(3) and phosphorylation. Immunohistochemical studies and co-immunoprecipitation assays showed the relevance of the interaction in a physiological context. These results suggest that IRBIT is released from activated IP(3)R, raising the possibility that IRBIT acts as a signaling molecule downstream from IP(3)R.  相似文献   

18.
The second messenger myo-inositol-1,4,5-trisphosphate (IP(3)) acts on the IP(3) receptor (IP(3)R), an IP(3)-activated Ca(2+) channel of the endoplasmic reticulum (ER). The IP(3)R agonist IP(3) inhibits starvation-induced autophagy. The IP(3)R antagonist xestospongin B induces autophagy in human cells through a pathway that requires the obligate contribution of Beclin-1, Atg5, Atg10, Atg12 and hVps34, yet is inhibited by ER-targeted Bcl-2 or Bcl-XL, two proteins that physically interact with IP(3)R. Autophagy can also be induced by depletion of the IP(3)R by small interfering RNAs. Autophagy induction by IP(3)R blockade cannot be explained by changes in steady state levels of Ca(2+) in the endoplasmic reticulum (ER) and the cytosol. Autophagy induction by IP(3)R blockade is effective in cells lacking the obligate mediator of ER stress IRE1. In contrast, IRE1 is required for autophagy induced by ER stress-inducing agents such a tunicamycin or thapsigargin. These findings suggest that there are several distinct pathways through which autophagy can be initiated at the level of the ER.  相似文献   

19.
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry gate for active Ca(2+) reabsorption in the kidney. Ca(2+) influx through TRPV5 induces rapid channel inactivation, preventing excessive Ca(2+) influx. This inactivation is mediated by the last ~30 residues of the carboxy (C) terminus of the channel. Since the Ca(2+)-sensing protein calmodulin has been implicated in Ca(2+)-dependent regulation of several TRP channels, the potential role of calmodulin in TRPV5 function was investigated. High-resolution nuclear magnetic resonance (NMR) spectroscopy revealed a Ca(2+)-dependent interaction between calmodulin and a C-terminal fragment of TRPV5 (residues 696 to 729) in which one calmodulin binds two TRPV5 C termini. The TRPV5 residues involved in calmodulin binding were mutated to study the functional consequence of releasing calmodulin from the C terminus. The point mutants TRPV5-W702A and TRPV5-R706E, lacking calmodulin binding, displayed a strongly diminished Ca(2+)-dependent inactivation compared to wild-type TRPV5, as demonstrated by patch clamp analysis. Finally, parathyroid hormone (PTH) induced protein kinase A (PKA)-dependent phosphorylation of residue T709, which diminished calmodulin binding to TRPV5 and thereby enhanced channel open probability. The TRPV5-W702A mutant exhibited a significantly increased channel open probability and was not further stimulated by PTH. Thus, calmodulin negatively modulates TRPV5 activity, which is reversed by PTH-mediated channel phosphorylation.  相似文献   

20.
Although it has been suggested that the C-terminal tail of the β(1a) subunit of the skeletal dihyropyridine receptor (DHPR) may contribute to voltage-activated Ca(2+) release in skeletal muscle by interacting with the skeletal ryanodine receptor (RyR1), a direct functional interaction between the two proteins has not been demonstrated previously. Such an interaction is reported here. A peptide with the sequence of the C-terminal 35 residues of β(1a) bound to RyR1 in affinity chromatography. The full-length β(1a) subunit and the C-terminal peptide increased [(3)H]ryanodine binding and RyR1 channel activity with an AC(50) of 450-600 pM under optimal conditions. The effect of the peptide was dependent on cytoplasmic Ca(2+), ATP, and Mg(2+) concentrations. There was no effect of the peptide when channel activity was very low as a result of Mg(2+) inhibition or addition of 100 nM Ca(2+) (without ATP). Maximum increases were seen with 1-10 μM Ca(2+), in the absence of Mg(2+) inhibition. A control peptide with the C-terminal 35 residues in a scrambled sequence did not bind to RyR1 or alter [(3)H]ryanodine binding or channel activity. This high-affinity in vitro functional interaction between the C-terminal 35 residues of the DHPR β(1a) subunit and RyR1 may support an in vivo function of β(1a) during voltage-activated Ca(2+) release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号