首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most subacute sclerosing panencephalitis (SSPE) viruses, including our Osaka-1, -2, and -3 strains isolated in Osaka, have shown negative hemadsorption (HAD) by African green monkey red blood cells. This property has been thought to be characteristic of SSPE virus as compared to the positive reaction of the standard Edmonston strain of measles virus (MV). However, this assumption has become quite obscure because MV mutates frequently at the genetic level during its multiplication and also because recent field strains isolated by lymphoblastoid cell lines have shown negative HAD. To investigate the above issue, the nucleotide sequences of the hemagglutinin (H) genes from SSPE virus Osaka-1, -2, or -3 strains were compared to those of various MV field strains isolated in Osaka by Vero cells. The H gene sequences of three SSPE strains were relatively conserved without such biased hypermutation as had been observed in the matrix (M) gene of three SSPE strains. However, this analysis of the H gene sequence of the SSPE viruses enabled us to deduce possible progenitor MVs, which are in agreement with the deduction from the M gene analysis we reported previously. The HAD of Vero cells transfected with the cloned H cDNAs from the SSPE strains and their progenitors suggested that negative HAD of the SSPE viruses has been maintained as one of original properties of the progenitor MVs rather than having been acquired as an altered one during long-term persistent infection in the brains of patients with SSPE.  相似文献   

2.
3.
Wild-type measles virus (MV) isolated from B95a cells has a restricted host cell specificity and hardly replicates in Vero cells, whereas the laboratory strain Edmonston (Ed) replicates in a variety of cell types including Vero cells. To investigate the role of H protein in the differential MV host cell specificity and cell fusion activity, H proteins of wild-type MV (IC-B) and Ed were coexpressed with the F protein in Vero cells. Cell-cell fusion occurred in Vero cells when Ed H protein, but not IC-B H protein, was expressed. To analyze the role of H protein in the context of viral infection, a recombinant IC-B virus bearing Ed H protein (IC/Ed-H) and a recombinant Ed virus bearing IC-B H protein (Ed/IC-H) were generated from cloned cDNAs. IC/Ed-H replicated efficiently in Vero cells and induced small syncytia in Vero cells, indicating that Ed H protein conferred replication ability in Vero cells on IC/Ed-H. On the other hand, Ed/IC-H also replicated well in Vero cells and induced small syncytia, although parental Ed induced large syncytia in Vero cells. These results indicated that an MV protein(s) other than H protein was likely involved in determining cell fusion and host cell specificity of MV in the case of our recombinants. SLAM (CDw150), a recently identified cellular receptor for wild-type MV, was not expressed in Vero cells, and a monoclonal antibody against CD46, a cellular receptor for Ed, did not block replication or syncytium formation of Ed/IC-H in Vero cells. It is therefore suggested that Ed/IC-H entered Vero cells through another cellular receptor.  相似文献   

4.
Neurite outgrowth is essential for the communication of the nervous system. The rat Pheochromocytoma (PC12) cells are commonly used in the neuronal cell study. It is well known that exogenous stimuli such as Nerve Growth Factor (NGF) induce neurite outgrowth. In the present study it has been investigated whether or not the conditioned medium from human neuroblastoma cell line (IMR-32) and human glioblastoma cell line (U87MG) may augment neurite outgrowth in PC12 cells. PC12 were cultured with and without conditioned media of IMR-32 and U87MG. The result showed that both the conditioned media induce neurite outgrowth within 48 hr and stops further proliferation of PC12 cells. However no outgrowth was noted in PC12 cells incubated without conditioned medium. In conclusion, it is shown that both the conditioned media (IMR-32 and U87MG) have the potential to induce the neurite outgrowth in the PC12 cells.  相似文献   

5.
Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein.  相似文献   

6.
A human neuroblastoma cell line (IMR-32), when differentiated, mimics large projections of the human cerebral cortex and under certain tissue culture conditions, forms intracellular fibrillary material, commonly observed in brains of patients affected with Alzheimer's disease. Our purpose is to use differentiated IMR-32 cells as an in vitro system for magnetic field exposure studies. We have previously studied in vitro differentiation of murine neuroblastoma (N1E-115) cells with respect to resting membrane potential development. The purpose of this study was to extend our investigation to IMR-32 cells. Electrophysiological (resting membrane potential, V(m)) and biochemical (neuron-specific enolase activity [NSE]) measurements were taken every 2 d for a period of 16 d. A voltage-sensitive oxonol dye together with flow cytometry was used to measure relative changes in V(m). To rule out any effect due to mechanical cell detachment, V(m) was indirectly measured by using a slow potentiometric dye (tetramethylrhodamine methyl ester) together with confocal digital imaging microscopy. Neuron-specific enolase activity was measured by following the production of phosphoenolpyruvate from 2-phospho-d-glycerate at 240 nm. Our results indicate that in IMR-32, in vitro differentiation as characterized by an increase in NSE activity is not accompanied by resting membrane potential development. This finding suggests that pathways for morphological-biochemical and electrophysiological differentiations in IMR-32 cells are independent of one another.  相似文献   

7.
Clinical isolates of measles virus (MV) use signaling lymphocyte activation molecule (SLAM) as a cellular receptor, whereas vaccine and laboratory strains may utilize the ubiquitously expressed CD46 as an additional receptor. MVs also infect, albeit inefficiently, SLAM(-) cells, via a SLAM- and CD46-independent pathway. Our previous study with recombinant chimeric viruses revealed that not only the receptor-binding hemagglutinin (H) but also the matrix (M) protein of the Edmonston vaccine strain can confer on an MV clinical isolate the ability to grow well in SLAM(-) Vero cells. Two substitutions (P64S and E89K) in the M protein which are present in many vaccine strains were found to be responsible for the efficient growth of recombinant virus in Vero cells. Here we show that the P64S and E89K substitutions allow a strong interaction of the M protein with the cytoplasmic tail of the H protein, thereby enhancing the assembly of infectious particles in Vero cells. These substitutions, however, are not necessarily advantageous for MVs, as they inhibit SLAM-dependent cell-cell fusion, thus reducing virus growth in SLAM(+) B-lymphoblastoid B95a cells. When the cytoplasmic tail of the H protein is deleted, a virus with an M protein possessing the P64S and E89K substitutions no longer grows well in Vero cells yet causes cell-cell fusion and replicates efficiently in B95a cells. These results reveal a novel mechanism of adaptation and attenuation of MV in which the altered interaction of the M protein with the cytoplasmic tail of the H protein modulates MV growth in different cell types.  相似文献   

8.
Tahara M  Takeda M  Yanagi Y 《Journal of virology》2005,79(24):15218-15225
The Edmonston strain of measles virus (MV) was obtained by sequential passages of the original isolate in various cultured cells. Although attenuated in vivo, it grows efficiently in most primate cell lines. Previous studies have revealed that MV tropism cannot be solely explained by the use of CD150 and/or CD46 as a cellular receptor. In order to evaluate the contributions of individual genes of the Edmonston strain to growth in cultured cells, we generated a series of recombinant viruses in which part of the genome of the clinical isolate IC-B (which uses CD150 as a receptor) was replaced with the corresponding sequences of the Edmonston strain. The recombinant virus possessing the Edmonston hemagglutinin (H) gene (encoding the receptor-binding protein) grew as efficiently in Vero cells as the Edmonston strain. Those viruses having either the matrix (M) or large (L) protein gene from the Edmonston strain could also replicate well in Vero cells, although they entered them at low efficiencies. P64S and E89K substitutions were responsible for the ability of the M protein to make virus grow efficiently in Vero cells, while the first half of the Edmonston L gene was important for better replication. Despite efficient growth in Vero cells, the recombinant viruses with these mutations had growth disadvantage in CD150-positive lymphoid B95a cells. Thus, not only the H gene but also the M and L genes contribute to efficient replication of the Edmonston strain in some cultured cells.  相似文献   

9.
10.
IMR-32 and SK-N-MC cells were found to contain [3H]quinuclidinyl benzilate specific binding sites inhibited by pirenzepine in a manner suggesting the presence of both M1-type and M2-type muscarinic receptor recognition sites. Neither cell had detectable [3H]8-OH-DPAT binding sites. Carbachol stimulated the rate of inositol phospholipid breakdown in IMR-32 and SK-N-MC human neuroblastoma cells with an EC50 value of about 50 microM in both cases. Pirenzepine inhibited the carbachol (100 microM)-stimulated inositol phospholipid breakdown in both cells with Hill slopes of unity and IC50 values of 15 nM (IMR-32) and 12 nM (SK-N-MC). The 5-HT1A receptor agonist 8-OH-DPAT competitively inhibited carbachol-stimulated inositol phospholipid breakdown with pA2 values of 5.78 (IMR-32) and 5.61 (SK-N-MC). These values are consistent with the inhibitory potency of 8-OH-DPAT towards [3H]quinuclidinyl benzilate binding in these cells. The 5-HT agonists 5-MeODMT and buspirone at micromolar concentrations inhibited carbachol-stimulated breakdown in IMR-32 cells. The inhibition by 8-OH-DPAT and 5-MeODMT was not affected by preincubation with (-)alprenolol. 5-HT (10-100 microM) was without effect on either basal or carbachol-stimulated breakdown. It is concluded that IMR-32 and SK-N-MC neuroblastoma cells express muscarinic M1-type but not serotoninergic receptors coupled to phosphoinositide-specific phospholipase C. 8-OH-DPAT acts as a weak antagonist at these muscarinic receptors.  相似文献   

11.
12.
13.
14.
T C Wong  M Ayata  S Ueda    A Hirano 《Journal of virology》1991,65(5):2191-2199
We identified an acute measles virus (Nagahata strain) closely related to a defective virus (Biken strain) isolated from a patient with subacute sclerosing panencephalitis (SSPE). The proteins of Nagahata strain measles virus are antigenically and electrophoretically similar to the proteins of Edmonston strain measles virus. However, the nucleotide sequence of the Nagahata matrix (M) gene is significantly different from the M genes of all the acute measles virus strains studied to date. The Nagahata M gene is strikingly similar to the M gene of Biken strain SSPE virus isolated several years later in the same locale. Eighty percent of the nucleotide differences between the Nagahata and Biken M genes are uridine-to-cytosine transitions known as biased hypermutation, which has been postulated to be caused by a cellular RNA-modifying activity. These biased mutations account for all but one of the numerous missense genetic changes predicted to cause amino acid substitutions. As a result, the Biken virus M protein loses conformation-specific epitopes that are conserved in the M proteins of Nagahata and Edmonston strain acute measles viruses. These conformation-specific epitopes are also absent in the cryptic M proteins encoded by the hypermutated M genes of two other defective SSPE viruses (Niigata and Yamagata strains). Nagahata-like sequences are found in the M genes of at least five other SSPE viruses isolated from three continents. These data indicate that Biken strain SSPE virus is derived from a progenitor closely resembling Nagahata strain acute measles virus and that biased hypermutation is largely responsible for the structural defects in the Biken virus M protein.  相似文献   

15.
Multiple forms of ricin have been isolated from castor bean seeds. Two forms, ricin-1 and ricin-2, differ in their isoelectric pI values and toxicity towards IMR-32 cells. Inhibition of IMR-32 DNA polymerase α2 is more pronounced with ricin-1 (65%) than with ricin-2 (10%). Ricin B chain (pI = 5.2) isolated from ricin-1 binds to IMR-32 cell surfaces as well as inhibits DNA polymerase α2 activity when studiedin vitro. The presence of galβ-linked glycoconjugates near the active site of IMR-32 DNA polymerase α2 has been proposed. Replication modulators which bind to the glycose portion of the enzymes involved in the replication system may need a mandatory binding to cell surface glycoconjugates for their activity.  相似文献   

16.
Measles virus (MV) can infect the central nervous system and, in rare cases, causes subacute sclerosing panencephalitis, characterized by a progressive degeneration of neurons. The route of MV transmission in neurons was investigated in cultured rat hippocampal slices by using MV expressing green fluorescent protein. MV infected hippocampal neurons and spread unidirectionally, in a retrograde manner, from CA1 to CA3 pyramidal cells and from there to the dentate gyrus. Spreading of infection depended on cell-to-cell contact and occurred without any detectable release of infectious particles. The role of the viral proteins in the retrograde MV transmission was determined by investigating their sorting in infected pyramidal cells. MV glycoproteins, the fusion protein (F) and hemagglutinin (H), the matrix protein (M), and the phosphoprotein (P), which is part of the viral ribonucleoprotein complex, were all sorted to the dendrites. While M, P, and H proteins remained more intracellular, the F protein localized to prominent, spine-type domains at the surface of infected cells. The detected localization of MV proteins suggests that local microfusion events may be mediated by the F protein at sites of synaptic contacts and is consistent with a mechanism of retrograde transmission of MV infection.  相似文献   

17.
18.
Eosinophils release a number of mediators that are potentially toxic to nerve cells. However, in a number of inflammatory conditions, such as asthma and inflammatory bowel disease, it has been shown that eosinophils localize to nerves, and this is associated with enhanced nerve activity. In in vitro studies, we have shown that eosinophil adhesion via neuronal ICAM-1 leads to activation of neuronal NF-kappaB via an ERK1/2-dependent pathway. In this study, we tested the hypothesis that eosinophil adhesion to nerves promotes neural survival by protection from inflammation-associated apoptosis. Exposure of differentiated IMR-32 cholinergic nerve cells to IL-1beta, TNF-alpha, and IFN-gamma, or culture in serum-deprived medium, induced neuronal apoptosis, as detected by annexin V staining, caspase-3 activation, and DNA laddering. Addition of human eosinophils to IMR-32 nerve cells completely prevented all these features of apoptosis. The mechanism of protection by eosinophils was by an adhesion-dependent activation of ERK1/2, which led to the induced expression of the antiapoptotic gene bfl-1. Adhesion to nerve cells did not influence the expression of the related genes bax and bad. Thus, prevention of apoptosis by eosinophils may be a mechanism by which these cells regulate neural plasticity in the peripheral nervous system.  相似文献   

19.
Measles virus is the causative agent of subacute sclerosing panencephalitis (SSPE). The viruses isolated from brain cells of patients with SSPE (called SSPE viruses) are defective in cell-free virus production in vitro. To investigate the cell tropism of three strains of SSPE virus (Osaka-1, Osaka-2, Osaka-3), SSPE virus-infected cell cultures were treated with cytochalasin D to prepare virus-like particles (CD-VLPs). All CD-VLPs formed syncytia after infection in CHO cells expressing CD150 but not in those expressing CD46. In addition, an antibody to CD46 did not block the infection of Vero cells by SSPE CDVLPs. The results were consistent with our previous suggestion that one or more unidentified receptors might be involved in the entry process. Infection with the CD-VLPs from three SSPE strains was further examined in different human cell lines, including those of neural origin, and was found to induce syncytia in epithelial cells (HeLa and 293T) as well as neuroblastoma cells (IMR-32 and SK-N-SH) with varying efficiency. SSPE CD-VLPs also infected glioblastoma cells (A172) and astrocytoma cells (U-251) but syncytial formation was rarely induced. These epithelial and neural cell lines were not permissive for the replication of wild-type MV. Together with our previous observations, these results suggest that the cell entry receptor is the major factor determining the cell tropism of SSPE viruses. Further studies are necessary to identify other viral and/or cellular factors that might be involved in the replication of SSPE virus in specific neural cells and in the brain.  相似文献   

20.
Sildenafil, a phosphodiesterase-5 inhibitor is FDA approved drug against erectile dysfunction. It is currently undergoing many clinical trials, alone or in combinations against different diseases. Treatment of neural progenitor cells with sildenafil is known to regulate their basal cGMP levels and enhance neurogenesis and differentiation. cGMP as well as cAMP are known to play a central role in the maintenance, repair and remodelling of the nervous system. In the present study, we report the neurodifferentiation property of sildenafil in neuroblastoma cancer cell line IMR-32. Sildenafil was found to induce the formation of neurite outgrowths that were found expressing neuronal markers, such as NeuN, NF-H and βIII tubulin. IS00384, a recently discovered PDE5 inhibitor by our laboratory, was also found to induce neurodifferentiation of IMR-32 cells. The effect of IS00384 on differentiation was even more profound than sildenafil. Both the compounds were found to elevate and activate the Guanine nucleotide exchange factor C3G, which is a regulator of differentiation in IMR-32 cells. They were also found to elevate the levels of cGMP and activate the AMPK-ACC and PI3K-Akt signalling pathways. These pathways are known to play important role in cytoskeletal rearrangements necessary for differentiation. This study highlights the role of phosphodiesterases-5 in neurodifferentiation and use of sildenafil and IS00384 as small molecule tools to study the process of cellular differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号