首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basic reproduction ratio (R (0)) is the expected number of secondary cases per primary in a totally susceptible population. In a baseline model, faced with an individual host strain pathogen virulence evolves to maximise R (0) which yields monomorphism. The basic depression ratio (D (0)) is the amount by which the total population is decreased, per infected individual, due to the presence of infection. Again, in a baseline model, faced with an individual pathogen strain host resistance evolves to minimise D (0) which yields monomorphism. With this in mind we analyse the community dynamics of the interaction between R (0) and D (0) and show that multi-strain co-existence (polymorphism) is possible and we discuss the possibility of stable cycles occuring within the co-existence states. We show for co-existence, the number of host and pathogen strains present need to be identical in order to achieve stable equilibria. For polymorphic states we observe contingencies (outcome dependent on initial conditions) between both point equilibrium and sustained oscillations. Invasion criteria for host and pathogen strains are identified.  相似文献   

2.
Maximization of the basic reproduction ratio or R(0) is widely believed to drive the emergence of novel pathogens. The presence of exploitable heterogeneities in a population, such as high variance in the number of potentially infectious contacts, increases R(0) and thus pathogens that can exploit heterogeneities in the contact structure have an advantage over those that do not. However, exploitation of heterogeneities results in a more rapid depletion of the potentially susceptible neighbourhood for an infected host. Here a simple model of pathogen evolution in a heterogeneous environment is developed and placed in the context of HIV transmission. In this model, it is shown that pathogens may evolve towards lower R(0), even if this results in pathogen extinction. For sufficiently high transmissibility, two locally stable strategies exist for an evolving pathogen, one that exploits heterogeneities and results in higher R(0), and one that does not, and results in lower R(0). While the low R(0) strategy is never evolutionarily stable, invading strains with higher R(0) will also converge to the low R(0) strategy if not sufficiently different from the resident strain. Heterogenous transmission is increasingly recognized as fundamental to epidemiological dynamics and the evolution of pathogens; here, it is shown that the ability to exploit heterogeneity is a strategy that can itself evolve.  相似文献   

3.
The purpose of this article is to establish and analyse a baseline model for the apparent competition between many host strains attempting to avoid a uniform microparasitic population. The model is formulated and analysed using invasion criteria in the main text. The results are verified by more formal methods in the appendix. Cases in which the microparasite can invade are distinguished geometrically from those in which it cannot using threshold and strain composition conditions. A major result obtained when the pathogen persists is a competitive exclusion principle for host resistance. For non-lethal infections, the winning strain is that which affords the pathogen maximum threshold density; for possibly lethal infections, a somewhat generalized version of this criterion is presented and discussed. The tension is highlighted between these results and the baseline behaviour of many pathogen strains and a uniform host population-here the winning pathogen strain is that with minimum threshold density.  相似文献   

4.
Host resistance and parasite virulence are influenced by multiple interacting factors in complex natural communities. Yet, these interactive effects are seldom studied concurrently, resulting in poor understanding of host‐pathogen‐environment dynamics. Here, we investigated how the level of opportunist pathogen virulence, strength of host immunity and the host condition manipulated via diet affect the survival of wood tiger moth Parasemia plantaginis (Arctidae). Larvae from “low cuticular melanin” and “high cuticular melanin” (considered as low and high pathogen resistance, respectively) selection lines were infected with moderately and highly virulent bacteria strains of Serratia marcescens, while simultaneously manipulating host diet (with or without antibacterial compounds). We measured host survival and food preference before and after infection to test whether the larvae “self‐medicate” by choosing an anti‐infection diet (Plantago major, i.e., plantain leaf) over lettuce (Lactuca sativa). “High melanin” larvae were more resistant than “low melanin” larvae to the less virulent strain that had slower growth and colonization rate compared with the more virulent strain. Cuticular melanin did not enhance survival when the larvae were infected with the highly virulent strain. Anti‐infection diet enhanced survival of the “high melanin” but not the “low melanin” hosts. Survival was dependent on family origin even within the melanin selection lines. Despite the intrinsic preference for lettuce, no evidence of self‐medication was found. These results demonstrate that the relative benefit of host cuticular melanin depends on both diet and pathogen virulence: plantain diet only boosted the immunity of already resistant “high melanin” hosts, and cuticular melanin increased host survival only when infected with moderately virulent pathogen. Moreover, there was considerable variation in host survival between families within both melanin lines suggesting genetic basis for resistance. These results indicate that although melanin is an important predictor of insect immunity, its effect on disease outcomes greatly depends on other interacting factors.  相似文献   

5.
AIMS: To examine sensitivities of various Drosophila melanogaster strains towards human pathogenic and nonpathogenic gram-positive bacteria. METHODS AND RESULTS: The D. melanogaster Oregon R strain was infected by injecting the thorax with a needle containing Escherichia coli (negative control), Listeria monocytogenes, Staphylococcus aureus (both food-borne pathogens), Listeria innocua, Bacillus subtilis, Carnobacterium maltaromaticum, Lactobacillus plantarum or Pediococcus acidilactici (all nonpathogenic bacteria). Listeria monocytogenes and S. aureus killed the host rapidly compared with the negative control. Infection with L. innocua, B. subtilis or C. maltaromaticum also resulted in a high fly mortality, whereas Lact. plantarum and P. acidilactici resulted in a slightly increased mortality. Four additional D. melanogaster lines, three of which had been selected for heat, cold and desiccation resistance respectively, were subjected to infection by L. monocytogenes, S. aureus and E. coli. Mortality rates were comparable with that of the Oregon R strain. CONCLUSIONS: Use of the injection method shows the limitation of D. melanogaster as a model host for gram-positive bacteria as opportunistic infection by nonpathogenic gram-positive bacteria results in partial or high mortality. In addition, lines of fruit flies resistant to various stress exposures did not show an increased resistance to infection by gram-positive pathogens under the conditions tested. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the inadequacy of D. melanogaster infected by the injection method in order to distinguish between virulent and nonvirulent gram-positive bacteria.  相似文献   

6.
Host resistance consists of defences that limit pathogen burden, and can be classified as either adaptations targeting recovery from infection or those focused upon infection avoidance. Conventional theory treats avoidance as a fixed strategy which does not vary from one interaction to the next. However, there is increasing empirical evidence that many avoidance strategies are triggered by external stimuli, and thus should be treated as phenotypically plastic responses. Here, we consider the implications of avoidance plasticity for host–pathogen coevolution. We uncover a number of predictions challenging current theory. First, in the absence of pathogen trade-offs, plasticity can restrain pathogen evolution; moreover, the pathogen exploits conditions in which the host would otherwise invest less in resistance, causing resistance escalation. Second, when transmission trades off with pathogen-induced mortality, plasticity encourages avirulence, resulting in a superior fitness outcome for both host and pathogen. Third, plasticity ensures the sterilizing effect of pathogens has consequences for pathogen evolution. When pathogens castrate hosts, selection forces them to minimize mortality virulence; moreover, when transmission trades off with sterility alone, resistance plasticity is sufficient to prevent pathogens from evolving to fully castrate.  相似文献   

7.
Infectious pathogens compete and are subject to natural selection at multiple levels. For example, viral strains compete for access to host resources within an infected host and, at the same time, compete for access to susceptible hosts within the host population. Here we propose a novel approach to study the interplay between within- and between-host competition. This approach allows for a single host to be infected by and transmit two strains of the same pathogen. We do this by nesting a model for the host–pathogen dynamics within each infected host into an epidemiological model. The nesting of models allows the between-host infectivity and mortality rates suffered by infected hosts to be functions of the disease progression at the within-host level. We present a general method for computing the basic reproduction ratio of a pathogen in such a model. We then illustrate our method using a basic model for the within-host dynamics of viral infections, embedded within the simplest susceptible–infected (SI) epidemiological model. Within this nested framework, we show that the virion production rate at the level of the cell–virus interaction leads, via within-host competition, to the presence or absence of between-host level competitive exclusion. In particular, we find that in the absence of mutation the strain that maximizes between-host fitness can outcompete all other strains. In the presence of mutation we observe a complex invasion landscape showing the possibility of coexistence. Although we emphasize the application to human viral diseases, we expect this methodology to be applicable to be many host–parasite systems.  相似文献   

8.
Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host’s immune system influences the pathogen’s transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence–transmission trade-offs and evolution in vector-borne pathogen–host systems. Here, we consider an immuno-epidemiological model that links the within-host dynamics to between-host circulation of a vector-borne disease. On the immunological scale, the model mimics antibody-pathogen dynamics for arbovirus diseases, such as Rift Valley fever and West Nile virus. The within-host dynamics govern transmission and host mortality and recovery in an age-since-infection structured host-vector-borne pathogen epidemic model. By considering multiple pathogen strains and multiple competing host populations differing in their within-host replication rate and immune response parameters, respectively, we derive evolutionary optimization principles for both pathogen and host. Invasion analysis shows that the \({\mathcal {R}}_0\) maximization principle holds for the vector-borne pathogen. For the host, we prove that evolution favors minimizing case fatality ratio (CFR). These results are utilized to compute host and pathogen evolutionary trajectories and to determine how model parameters affect evolution outcomes. We find that increasing the vector inoculum size increases the pathogen \({\mathcal {R}}_0\), but can either increase or decrease the pathogen virulence (the host CFR), suggesting that vector inoculum size can contribute to virulence of vector-borne diseases in distinct ways.  相似文献   

9.
An introduction of disease-resistant variety of a crop plant often leads to the development of a virulent race in pathogen species that restores the pathogenicity to the resistant crop. This often makes disease control of crop plants extremely difficult. In this paper, we theoretically explore the optimal 'multiline' control, which makes use of several different resistant varieties, that minimizes the expected degree of crop damages caused by epidemic outbreaks of the pathogen. We examine both single-locus and two-locus gene-for-gene (GFG) systems for the compatibility relationship between host genotypes and pathogen genotypes, in which host haplotype has either susceptible or resistant allele in each resistance locus, and the pathogen haplotype has either avirulent or virulent allele in the corresponding virulence locus. We then study the optimal planting strategy of host resistant genotypes based on standard epidemiological dynamics with pathogen spore stages. The most striking result of our single-locus GFG model is that there exists an intermediate optimum mixing ratio for the susceptible and resistant crops that maximizes the final yield, in spite of the fact that the susceptible crop has no use to fight against either avirulent or virulent race of the pathogen. The intermediate mixture is optimum except when the initial pathogen spore population in the season consists exclusively of the virulent race. The optimal proportion of resistant crops is approximately 1/R(0), where R(0) is the basic reproductive ratio of pathogen--the rest (the vast majority if R(0) is large) of crops should be the susceptible genotype. By mixing susceptible and resistant crops, we can force the pathogen races to compete with each other for their available hosts. This competition between avirulent and virulent races prevents the fatal outbreak of the virulent race (the super-race) that can infect all the host genotypes. In the two-locus GFG control, there again exists the optimal mixing ratio for the fraction of universally susceptible genotype and the total fraction of various resistant genotypes, with the ratio close to 1/R(0).  相似文献   

10.
Infectious pathogens compete and are subject to natural selection at multiple levels. For example, viral strains compete for access to host resources within an infected host and, at the same time, compete for access to susceptible hosts within the host population. Here we propose a novel approach to study the interplay between within- and between-host competition. This approach allows for a single host to be infected by and transmit two strains of the same pathogen. We do this by nesting a model for the host-pathogen dynamics within each infected host into an epidemiological model. The nesting of models allows the between-host infectivity and mortality rates suffered by infected hosts to be functions of the disease progression at the within-host level. We present a general method for computing the basic reproduction ratio of a pathogen in such a model. We then illustrate our method using a basic model for the within-host dynamics of viral infections, embedded within the simplest susceptible-infected (SI) epidemiological model. Within this nested framework, we show that the virion production rate at the level of the cell-virus interaction leads, via within-host competition, to the presence or absence of between-host level competitive exclusion. In particular, we find that in the absence of mutation the strain that maximizes between-host fitness can outcompete all other strains. In the presence of mutation we observe a complex invasion landscape showing the possibility of coexistence. Although we emphasize the application to human viral diseases, we expect this methodology to be applicable to be many host-parasite systems.  相似文献   

11.
Mixed-genotype infections (infections of a host by more than one pathogen genotype) are common in plant-pathogen systems. However their impact on the course of the infection and especially on pathogen virulence and host response to infection is poorly understood. We investigated the effects of mixed-genotype infections on several parameters: host resistance and tolerance, as well as pathogen aggressiveness and virulence. For these purposes, we inoculated three wheat lines with three Mycosphaerella graminicola genotypes, alone or in mixtures, in a greenhouse experiment. For some of the mixtures, disease severity and virulence were lower than expected from infection by the same genotypes alone, suggesting that competition between genotypes was reducing their aggressiveness and virulence. One host line was fully resistant, but there were differences in resistance in the other lines. The two host lines that became infected differed slightly in tolerance, but mixed-genotype infections had no effect on host tolerance.  相似文献   

12.
Virulence is generally considered to benefit parasites by enhancing resource-transfer from host to pathogen. Here, we offer an alternative framework where virulent immune-provoking behaviours and enhanced immune resistance are joint tactics of invading pathogens to eliminate resident competitors (transferring resources from resident to invading pathogen). The pathogen wins by creating a novel immunological challenge to which it is already adapted. We analyse a general ecological model of 'proactive invasion' where invaders not adapted to a local environment can succeed by changing it to one where they are better adapted than residents. However, the two-trait nature of the 'proactive' strategy (provocation of, and adaptation to environmental change) presents an evolutionary conundrum, as neither trait alone is favoured in a homogenous host population. We show that this conundrum can be resolved by allowing for host heterogeneity. We relate our model to emerging empirical findings on immunological mediation of parasite competition.  相似文献   

13.
The population biology of parasite-induced changes in host behavior   总被引:5,自引:0,他引:5  
The ability of parasites to change the behavior of infected hosts has been documented and reviewed by a number of different authors (Holmes and Bethel, 1972; Moore, 1984a). This review attempts to quantify the population dynamic consequences of this behavior by developing simple mathematical models for the most frequently recorded of such parasite life cycles. Although changes in the behavior of infected hosts do occur for pathogens with direct life cycles, they are most commonly recorded in the intermediate hosts of parasites with complex life cycles. All the changes in host behavior serve to increase rates of transmission of the parasites between hosts. In the simplest case the changes in behavior increase rates of contact between infected and susceptible conspecific hosts, whereas in the more complex cases fairly sophisticated manipulations of the host's behavioral repertory are achieved. Three topics are dealt with in some detail: (1) the behavior of the insect vectors of such diseases as malaria and trypanosomiasis; (2) the intermediate hosts of helminths whose behavior is affected in such a way as to make them more susceptible to predation by the definitive host in the life cycle; and (3) the behavior and fecundity of molluscs infected with asexually reproducing parasitic flatworms. In each case an expression is derived for R0, the basic reproductive rate of the parasite when first introduced into the population. This is used to determine the threshold numbers of definitive and intermediate hosts needed to maintain a population of the pathogen. In all cases, parasite-induced changes in host behavior tend to increase R0 and reduce the threshold number of hosts required to sustain the infection. The population dynamics of the interaction between parasites and their hosts are then explored using phase plane analyses. This suggests that both the parasite and intermediate host populations may show oscillatory patterns of abundance. When the density of the latter is low, parasite-induced changes in host behavior increase this tendency to oscillate. When intermediate host population densities are high, parasite population density is determined principally by interactions between the parasites and their definitive hosts, and changes in the behavior of intermediate hosts are less important in determining parasite density. Analysis of these models also suggests that both asexual reproduction of the parasite within a host and parasite-induced reduction in host fecundity may be stabilizing mechanisms when they occur in the intermediate hosts of parasite species with indirect life cycles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The specificity of pathogen–vector–host interactions is an important element of disease epidemiology. For generalist pathogens, different pathogen strains, vector species, or host species may all contribute to variability in disease incidence. One such pathogen is Xylella fastidiosa Wells et al., a xylem-limited bacterium that infects dozens of crop, ornamental, and native plants in the USA. This pathogen also has a diverse vector complex and multiple biologically distinct strains. We studied the implications of diversity in this pathogen–vector–host system, by quantifying variability in transmission efficiency of different X. fastidiosa strains (isolates from almond and grape genetic groups) for different host plants (grape, almond, and alfalfa) by two of the most important vectors in California: glassy-winged sharpshooter [ Homalodisca vitripennis (Germar)] and green sharpshooter ( Draeculacephala minerva Ball) (both Hemiptera: Cicadellidae). Transmission of isolates of the almond strain by H. vitripennis did not differ significantly, whereas transmission varied significantly among isolates from the grape strain (15–90%). Host plant species did not affect H. vitripennis transmission. Conversely, D. minerva efficiency was mediated by both host plant species and pathogen strain. No acquisition of an almond isolate occurred regardless of plant type (0/122), whereas acquisition of a grape isolate from alfalfa was 10-fold higher than from grape or almond plants. These results suggest that pathogen, vector, and host diversity impose contingencies on the transmission ecology of this complex disease system. Studies aimed at the development of management strategies for X. fastidiosa diseases should consider the complexity of these interactions as they relate to disease spread.  相似文献   

15.
Dyer KA  Jaenike J 《Genetics》2004,168(3):1443-1455
Maternally inherited microbes that spread via male-killing are common pathogens of insects, yet very little is known about the evolutionary duration of these associations. The few examples to date indicate very recent, and thus potentially transient, infections. A male-killing strain of Wolbachia has recently been discovered in natural populations of Drosophila innubila. The population-level effects of this infection are significant: approximately 35% of females are infected, infected females produce very strongly female-biased sex ratios, and the resulting population-level sex ratio is significantly female biased. Using data on infection prevalence and Wolbachia transmission rates, infected cytoplasmic lineages are estimated to experience a approximately 5% selective advantage relative to uninfected lineages. The evolutionary history of this infection was explored by surveying patterns of polymorphism in both the host and parasite genomes, comparing the Wolbachia wsp gene and the host mtDNA COI gene to five host nuclear genes. Molecular data suggest that this male-killing infection is evolutionarily old, a conclusion supported with a simple model of parasite and mtDNA transmission dynamics. Despite a large effective population size of the host species and strong selection to evolve resistance, the D. innubila-Wolbachia association is likely at a stable equilibrium that is maintained by imperfect maternal transmission of the bacteria rather than partial resistance in the host species.  相似文献   

16.
Arjen Biere  Sonja Honders 《Oecologia》1996,107(3):307-320
It is often assumed that host specialization is promoted by trade-offs in the performance of parasites on different host species, but experimental evidence for such trade-offs is scant. We studied differences in performance among strains of the anther smut fungus Ustilago violacea from two closely related host plant species, Silene alba and S. dioica, on progeny of (1) the host species from which they originated, (2) the alternative host species, and (3) inter-specific hybrids. Significant intra-specific variation in the pathogen was found for both infection success on a range of host genotypes (virulence) and components of spore production per infected host (aggressiveness) (sensu Burdon 1987). Strains did not have overall higher virulence on conspecifics of their host of origin than on strains from the heterospecific host, but they did have a significantly (c. 3 times) higher spore production per infected male host. This finding suggests that host adaptation may have evolved with respect to aggressiveness rather than virulence. The higher aggressiveness of strains on conspecifics of their host of origin resulted both from higher spore production per infected flower (spores are produced in the anthers), and greater ability to stimulate flower production on infected hosts. The latter indicates the presence of adaptive intraspecific variation in the ability of host manipulation. As transmission of the fungus is mediated by insects that are both pollinators of the host and vectors of the disease, we also assessed the effect of strains on host floral traits. Infection resulted in a reduction of inflorescence height, flower size, and nectar production per flower. Strains did not differ in their effect on nectar production, but infection with strains from S. alba resulted in a stronger reduction of inflorescence height and petal size on both host species. Vectors may therefore in principle discriminate among hosts infected by different strains and affect their efficiency of transmission. Contrary to assumptions of recent hypotheses about the role of host hybrids in the evolution of parasites, hybrids were not generally more susceptible than parental hosts. It is therefore unlikely that the rate of evolution of the pathogen on the parental species is slowed down by selection for specialization on the hybrids.  相似文献   

17.
Recently we have shown that a low (R(low)) and a high laboratory passage (R(high)) of the poultry pathogen Mycoplasma gallisepticum prototype strain R differ markedly in their capability to invade non-phagocytic eukaryotic cells. In the present study the infection traits of these two mycoplasma passages were compared in an in vivo setting. After aerosol inoculation of chickens, M. gallisepticum was re-isolated from the inner organs of birds infected with R(low), whereas no mycoplasma was recovered from the inner organs of birds infected with R(high). These results indicate that the two mycoplasma populations derived from strain R differ in their capacity to cross the mucosal barrier and suggest that cell invasion may play a major role in the observed systemic spreading of M. gallisepticum in its chicken host.  相似文献   

18.
The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded off with bacterial virulence factors, such as motility or resource use efficiency. However, the host survival depended also on its allocation to warning signal that is used against avian predation. When infected with most virulent ancestral bacterial strain, host larvae with a small warning signal survived better than those with an effective large signal. This suggests that larval immune defence could be traded off with effective defence against bird predators. However, the signal size had no effect on larval survival when less virulent control or evolved strains were used for infection suggesting that anti-predatory defence against avian predators, might be less constrained when the invading pathogen is rather low in virulence. Our results demonstrate that predation can be important indirect driver of the evolution of both pathogen virulence and host immunity in communities with multiple species interactions. Thus, the pathogen virulence should be viewed as a result of both past evolutionary history, and current ecological interactions.  相似文献   

19.
We use adaptive dynamics and pairwise invadability plots to examine the evolutionary dynamics of host resistance to microparasitic infection transmitted indirectly via free stages. We investigate trade-offs between pathogen transmission rate and intrinsic growth rate. Adaptive dynamics distinguishes various evolutionary outcomes associated with repellors, attractors or branching points. We find criteria corresponding to these and demonstrate that a major factor deciding the evolutionary outcome is whether trade-offs are acceleratingly or deceleratingly costly. We compare and contrast two models and show how the differences between them lead to different evolutionary outcomes.  相似文献   

20.
We propose a new threshold quantity for the analysis of the epidemiology of infectious diseases. The quantity is similar in concept to the familiar basic reproduction ratio, R0, but it singles out particular host types instead of providing a criterion that is uniform for all host types. Using this methodology we are able to identify the long-term effects of disease-control strategies for particular subgroups of the population, to estimate the level of control necessary when targeting control effort at a subset of host types, and to identify host types that constitute a reservoir of infection. These insights cannot be obtained by using R0 alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号