首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZFY, a male-associated Zn-finger protein encoded by the human Y chromosome, exhibits a distinctive two-finger repeat: whereas odd-numbered domains fit a general consensus, even-numbered domains exhibit systematic differences. Do these odd and even sequences encode structurally distinct surfaces for DNA recognition? As a first step toward answering this question, we have recently described the sequential 1H NMR assignment of a representative nonconsensus Zn finger (designated ZFY-6T) based on 2D NMR studies of a 30-residue peptide [Kochoyan, M., Havel, T.F., Nguyen, D.T., Dahl, C.E., Keutmann, H. T., & Weiss, M.A. (1991) Biochemistry 30, 3371-3386]. Initial structural modeling by distance geometry/simulated annealing (DG/SA) demonstrated that this peptide retained the N-terminal beta-hairpin and C-terminal alpha-helix (beta beta alpha motif) observed in consensus Zn fingers. However, the precision of this initial structure was limited by resonance overlap, which led to ambiguities in the assignment of key NOEs in the hydrophobic core. In this paper these ambiguities are resolved by selective deuterium labeling, enabling a refined structure to be calculated by DG/SA and restrained molecular dynamics. These calculations provide a detailed view of the hydrophobic core and protein surface, which are analyzed in reference to previously characterized Zn fingers. Variant (even) and consensus (odd) aromatic residues Y10 and F12, shown in an "aromatic swap" analogue to provide equivalent contributions to the hydrophobic core [Weiss, M.A., & Keutmann, H.T. (1990) Biochemistry 29, 9808-9813], nevertheless exhibit striking differences in packing interactions: Y10--but not F12--contributes to a contiguous region of the protein surface defined by putative specificity-determining residues. Alternating surface architectures may have implications for the mechanism of DNA recognition by the ZFY two-finger repeat.  相似文献   

2.
3.
The two-finger repeat in the human male-associated protein ZFY provides a model for comparative 2D-NMR studies of classical and variant Zn fingers. This repeat is defined in part by an alternation in spacing between consensus (HX3H) and variant (HX4H) histidine spacings. To investigate the effects of a "switch" between alternative histidine spacings, we have designed an HX3H analogue of a representative HX4H domain of known structure [ZFY-6; Kochoyan, M., Havel, T., Nguyen, D. T., Dahl, C. E., Keutmann, H. T., & Weiss, M. A. (1991) Biochemistry 30, 3371-3386]. The HX3H analogue (designated ZFY-switch) forms a tetrahedral Co2+ complex whose thermodynamic stability is similar to that of the parent peptide. 2D-NMR studies demonstrate that ZFY-switch and ZFY-6, although similar in overall structure, exhibit significant local changes near the site of deletion. Whereas the HX4H site in the native finger forms a nonstandard loop, the HX3H site in ZFY-switch folds as a 3(10) extension of the C-terminal alpha-helix, as observed in the NMR solution structure of a consensus HX3H domain [Lee, M. S., Gippert, G. P., Soman, K. V., Case, D. A., & Wright, P. E. (1989) Science 245, 635-637] and in the crystal structure of a representative Zn finger-DNA complex [Pavletich, N. P., & Pabo, C. O. (1991) Science 252, 809-817]. We propose that variant histidine spacings (HX3H and HX4H) encode a local switch between alternative surface architectures with implications for models of protein-DNA recognition.  相似文献   

4.
Alternating zinc-finger motifs in the human male-associated protein ZFY   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
7.
Shiraishi Y  Imanishi M  Sugiura Y 《Biochemistry》2004,43(20):6352-6359
In the DNA recognition mode of C(2)H(2)-type zinc fingers, the finger-finger connection region, consisting of the histidine spacing (HX(3-5)H) and linker, would be important for determining the orientation of the zinc finger domains. To clarify the influence of spacing between two ligand histidines in the DNA binding, we exchanged the histidine spacing between Sp1 and GLI zinc fingers, which have an HX(3)H-TGEKK linker (typical) and an HX(4)H-SNEKP linker (atypical), respectively. A significant decrease in the DNA binding affinity and specificity is found in Sp1-type peptides, whereas GLI-type peptides show a mild reduction. To evaluate the effect of the linker characteristics, we further designed Sp1-type mutants with an SNEKP linker. As a result, the significant effect of the histidine spacing in Sp1-type peptides was reduced. These results demonstrate that (1) the histidine spacing significantly affects the DNA binding of zinc finger proteins and (2) the histidine spacing and the following linker regions are one effective target for regulating the DNA recognition mode of zinc finger proteins.  相似文献   

8.
Triplex-forming oligonucleotides (TFOs) bind sequence-specifically in the major groove of double-stranded DNA. Cyclopropapyrroloindole (CPI), the electrophilic moiety that comprises the reactive subunit of the antibiotic CC-1065, gives hybridization-triggered alkylation at the N-3 position of adenines when bound in the minor groove of double-stranded DNA. In order to attain TFO-directed targeting of CPI, we designed and tested linkers to 'thread' DNA from the major groove-bound TFO to the minor groove binding site of CPI. Placement of an aromatic ring in the linker significantly enhanced the site-directed reaction, possibly due to a 'threading' mechanism where the aromatic ring is intercalated. All of the linkers containing aromatic rings provided efficient alkylation of the duplex target. The linker containing an acridine ring system, the strongest intercalator in the series, gave a small but clearly detectable amount of non-TFO-specific alkylation. An equivalent-length linker without an aromatic ring was very inefficient in DNA target alkylation.  相似文献   

9.
We describe sequence-specific alkylation in the minor groove of double-stranded DNA by a hybridization-triggered reactive group conjugated to a triplex forming oligodeoxyribonucleotide (TFO) that binds in the major groove. The 24 nt TFOs (G/A motif) were designed to form triplexes with a homopurine tract within a 65 bp target duplex. They were conjugated to an N 5-methyl-cyclopropapyrroloindole (MCPI) residue, a structural analog of cyclopropapyrroloindole (CPI), the reactive subunit of the potent antibiotic CC-1065. These moieties react in the DNA minor groove, alkylating adenines at their N3 position. In order to optimize alkylation efficiency, linkers between the TFO and the MCPI were varied both in length and composition. Quantitative alkylation of target DNA was achieved when the dihydropyrroloindole (DPI) subunit of CC-1065 was incorporated between an octa(propylene phosphate) linker and MCPI. The required long linker traversed one strand of the target duplex from the major groove-bound TFO to deliver the reactive group to the minor groove. Alkylation was directed by relative positioning of the TFOs. Sites in the minor groove within 4-8 nt from the end of the TFO bearing the reactive group were selectively alkylated.  相似文献   

10.
We constructed chimeric proteins that consist of two green fluorescent protein variants, EBFP and EGFP, connected by flexible linkers, (GGGGS)n (n = 3 approximately 4), and helical linkers, (EAAAK)n (n = 2 approximately 5). The conformations of the chimeric proteins with the various linkers were evaluated using small-angle X-ray scattering (SAXS). The SAXS experiments showed that introducing the short helical linkers (n = 2 approximately 3) causes multimerization, while the longer linkers (n = 4 approximately 5) solvate monomeric chimeric proteins. With the moderate-length linkers (n = 4), the observed radius of gyration (R(g)) and maximum dimension (D(max)) were 38.8 A and 120 A with the flexible linker, and 40.2 A and 130 A with the helical linker, respectively. The chimeric protein with the helical linker assumed a more elongated conformation as compared to that with the flexible linker. When the length of the helical linker increased (n = 5), R(g) and D(max) increased to 43.2 A and 140 A, respectively. These results suggest that the longer helix effectively separates the two domains of the chimeric protein. Considering the connectivity of the backbone peptide of the protein, the helical linker seems to connect the two domains diagonally. Surprisingly, the chimeric proteins with the flexible linker exhibited an elongated conformation, rather than the most compact side-by-side conformation expected from the fluorescence resonance energy transfer (FRET) analysis. Furthermore, the SAXS analyses suggest that destabilization of the short helical linker causes multimerization of the chimeric proteins. Information about the global conformation of the chimeric protein is thus be necessary for optimization of the linker design.  相似文献   

11.
Lentiviral nucleocapsid proteins are a class of multifunctional proteins that play an essential role in RNA packaging and viral infectivity. They contain two CX(2)CX(4)HX(4)C zinc binding motifs connected by a basic linker of variable length. The 3D structure of a 37-aa peptide corresponding to sequence 22-58 from lentiviral EIAV nucleocapsid protein NCp11, complexed with zinc, has been determined by 2D (1)H NMR spectroscopy, simulated annealing, and molecular dynamics. The solution structure consists of two zinc binding domains held together by a five-residue basic linker Arg(38)-Ala-Pro-Lys-Val(42) that allows for spatial proximity between the two finger domains. Observed linker folding is stabilized by H bonded secondary structure elements, resulting in an Omega-shaped central region, asymmetrically centered on the linker. The conformational differences and similarities with other NC zinc binding knuckles have been systematically analyzed. The two CCHC motifs, both characterized by a peculiar Pro-Gly sequence preceding the His residue, although preserving Zn-binding geometry and chirality of other known NC proteins, exhibit local fold differences both between each other and in comparison with other previously characterized retroviral CCHC motifs.  相似文献   

12.
Engineering novel allostery into existing proteins is a challenging endeavor to obtain novel sensors, therapeutic proteins, or modulate metabolic and cellular processes. The RG13 protein achieves such allostery by inserting a circularly permuted TEM-1 β-lactamase gene into the maltose binding protein (MBP). RG13 is positively regulated by maltose yet is, serendipitously, inhibited by Zn(2+) at low μM concentration. To probe the structure and allostery of RG13, we crystallized RG13 in the presence of mM Zn(2+) concentration and determined its structure. The structure reveals that the MBP and TEM-1 domains are in close proximity connected via two linkers and a zinc ion bridging both domains. By bridging both TEM-1 and MBP, Zn(2+) acts to "twist tie" the linkers thereby partially dislodging a linker between the two domains from its original catalytically productive position in TEM-1. This linker 1 contains residues normally part of the TEM-1 active site including the critical β3 and β4 strands important for activity. Mutagenesis of residues comprising the crystallographically observed Zn(2+) site only slightly affected Zn(2+) inhibition 2- to 4-fold. Combined with previous mutagenesis results we therefore hypothesize the presence of two or more inter-domain mutually exclusive inhibitory Zn(2+) sites. Mutagenesis and molecular modeling of an intact TEM-1 domain near MBP within the RG13 framework indicated a close surface proximity of the two domains with maltose switching being critically dependent on MBP linker anchoring residues and linker length. Structural analysis indicated that the linker attachment sites on MBP are at a site that, upon maltose binding, harbors both the largest local Cα distance changes and displays surface curvature changes, from concave to relatively flat becoming thus less sterically intrusive. Maltose activation and zinc inhibition of RG13 are hypothesized to have opposite effects on productive relaxation of the TEM-1 β3 linker region via steric and/or linker juxtapositioning mechanisms.  相似文献   

13.
The bacterial protein streptokinase (SK) contains three independently folded domains (α, β and γ), interconnected by two flexible linkers with noticeable sequence homology. To investigate their primary structure requirements, the linkers were swapped amongst themselves i.e. linker 1 (between α and β domains) was swapped with linker 2 (between β and γ domains) and vice versa. The resultant construct exhibited very low activity essentially due to an enhanced proteolytic susceptibility. However, a SK mutant with two linker 1 sequences, which was proteolytically as stable as WT-rSK retained about 10% of the plasminogen activator activity of rSK When the native sequence of each linker was substituted with 9 consecutive glycine sequences, in case of the linker 1 substitution mutant substantial activity was seen to survive, whereas the linker 2 mutant lost nearly all its activity. The optimal length of linkers was then studied through deletion mutagenesis experiments, which showed that deletion beyond three residues in either of the linkers resulted in virtually complete loss of activator activity. The effect of length of the linkers was then also examined by insertion of extraneous pentapeptide sequences having a propensity for adopting either an extended conformation or a relatively rigid conformation. The insertion of poly-Pro sequences into native linker 2 sequence caused up to 10-fold reduction in activity, whereas its effect in linker 1 was relatively minor. Interestingly, most of the linker mutants could form stable 1:1 complexes with human plasminogen. Taken together, these observations suggest that (i) the functioning of the inter-domain linkers of SK requires a critical minimal length, (ii) linker 1 is relatively more tolerant to insertions and sequence alterations, and appears to function primarily as a covalent connector between the α and β domains, and (iii) the native linker 2 sequence is virtually indispensable for the activity of SK probably because of structural and/or flexibility requirements in SK action during catalysis.  相似文献   

14.
15.
SPKK, a new nucleic acid-binding unit of protein found in histone.   总被引:30,自引:6,他引:24       下载免费PDF全文
M Suzuki 《The EMBO journal》1989,8(3):797-804
A new DNA-binding unit of a protein different from the alpha-helix, the beta-sheet and the Zn-finger is proposed based on the analysis of the structure of the N-terminus of sea urchin spermatogenous histone H1. DNA-binding arms of the sea urchin spermatogenous histones, H1 and H2B, are composed of repeats of Ser-Pro-Lys(Arg)-Lys(Arg) (SPKK) residues. A six-times repeat of SPKK (S6 peptide) was isolated from H1 and the competition of S6 for DNA binding with a DNA-binding dye, Hoechst 33258, was analysed. The S6 peptide is shown to be a competitive inhibitor of Hoechst 33258, and it is concluded that the SPKK repeat binds to DNA in its minor groove with a binding constant, KS6 = 1.67 X 10(10) M-1. The circular dichroism (CD) spectrum of a synthetic peptide, SPRKSPRK (S2 peptide), is quite different from those of both the alpha-helix and the beta-sheet and resembles that of a random coil. From statistical consideration of protein structures it is proposed that SPKK forms a compact beta-turn stabilized by an additional hydrogen bond. Since a repeated chain of such turn of SPKK offers a repeat of amides of Ser residues at a distance similar to that of DNA-binding amides of the drugs, Hoechst 33258 and netropsin, and since the amides of these drugs bind to DNA replacing the spine of hydration in a minor groove, it is proposed that a repeat of SPKK binds to DNA in the minor groove using similar hydrogen bonds.  相似文献   

16.
The DNA-binding domain of the oncoprotein c-Myb consists of three imperfect tryptophan-rich repeats, R1, R2 and R3. Each repeat forms an independent mini-domain with a helix-turn-helix related motif and they are connected by linkers containing highly conserved residues. The location of the linker between two DNA-binding units suggests a function analogous to a dimerisation motif with a critical role in positioning the recognition helices of each mini-domain. Mutational analysis of the minimal DNA-binding domain of chicken c-Myb (R2 and R3), revealed that besides the recognition helices of each repeat, the linker connecting them was of critical importance in maintaining specific DNA-binding. A comparison of several linker sequences from different Myb proteins revealed a highly conserved motif of four amino acids in the first half of the linker: LNPE (L138 to E141 in chicken c-Myb R2R3). Substitution of residues within this sequence led to reduced stability of protein-DNA complexes and even loss of DNA-binding. The two most affected mutants showed increased accessibility to proteases, and fluorescence emission spectra and quenching experiments revealed greater average exposure of tryptophans which suggests changes in conformation of the proteins. From the structure of R2R3 we propose that the LNPE motif provides two functions: anchorage to the first repeat (through L) and determination of the direction of the bridge to the next repeat (through P).  相似文献   

17.
18.
A highly photosensitive analogue of thymidine, 5-azidodeoxyuridine 5'-triphosphate, has been incorporated into 61-base pair (bp) DNA fragments corresponding to the central region of Xenopus somatic-type 5 S RNA genes such that 5-azidodeoxyuridine replaces some or all T residues in either the coding or noncoding strand of the TFIIIA binding site. Photolysis of TFIIIA.DNA complexes formed with these probes results in efficient, sequence-specific cross-linking to the Zn-finger protein providing direct evidence that this class of proteins have contacts in the major groove of their target sequence. Of the 20 T residues present in the 61-bp probes, greater than 90% of the cross-linking occurs from two sites in the 5 S RNA gene corresponding to T residues at positions 84 and 88 in the noncoding and coding strands, respectively. Digestion by V8 protease of the complex formed with the noncoding strand probe releases peptides not bound to the DNA. Amino acid sequence analysis of the remaining, cross-linked peptides indicates the region including zinc-finger 2 plus the finger 2-3 linker is in contact with position 84. The linker region between fingers 5 and 6 is also in close proximity to the major groove somewhere upstream from position 84.  相似文献   

19.
Information readout in the DNA minor groove is accompanied by substantial DNA deformations, such as sugar switching between the two conformational domains, B-like C2'-endo and A-like C3'-endo. The effect of sugar puckering on the sequence-dependent protein-DNA interactions has not been studied systematically, however. Here, we analyzed the structural role of A-like nucleotides in 156 protein-DNA complexes solved by X-ray crystallography and NMR. To this end, a new algorithm was developed to distinguish interactions in the minor groove from those in the major groove, and to calculate the solvent-accessible surface areas in each groove separately. Based on this approach, we found a striking difference between the sets of amino acids interacting with B-like and A-like nucleotides in the minor groove. Polar amino acids mostly interact with B-nucleotides, while hydrophobic amino acids interact extensively with A-nucleotides (a hydrophobicity-structure correlation). This tendency is consistent with the larger exposure of hydrophobic surfaces in the case of A-like sugars. Overall, the A-like nucleotides aid in achieving protein-induced fit in two major ways. First, hydrophobic clusters formed by several consecutive A-like sugars interact cooperatively with the non-polar surfaces in proteins. Second, the sugar switching occurs in large kinks promoted by direct protein contact, predominantly at the pyrimidine-purine dimeric steps. The sequence preference for the B-to-A sugar repuckering, observed for pyrimidines, suggests that the described DNA deformations contribute to specificity of the protein-DNA recognition in the minor groove.  相似文献   

20.
Bispecific single-chain diabodies (scDb) consist of the variable heavy and light chain domains of two antibodies connected by three linkers. The structure of an scDb in the V(H)-V(L) orientation is V(H)A-linkerA-V(L)B-linkerM-V(H)B-linkerB-V(L)A, with linkers A and B routinely chosen to be 5-6 residues and linker M 15-20 residues. Here, we applied display of scDb on filamentous phage to analyse the composition of optimal linker sequences. The three linkers were randomized in length and sequence using degenerated triplets coding for only six hydrophilic or aliphatic amino acids (Thr, Ser, Asp, Asn, Gly, Ala). Antigen-binding clones were then isolated by one to two rounds of selection on the two different antigens recognized by the bispecific scDb. Using an scDb directed against carcinoembryonic antigen (CEA) and beta-galactosidase (Gal), we found that monomeric scDb had a preferred length of 15 or more amino acid residues for the middle linker M and of 3-6 residues for the linkers A and B. No obvious bias towards a preferred linker sequence was observed. Reduction of the middle linker below 13 residues led to the formation of dimeric scDb, which most likely results from interchain pairing between all the V(H) and V(L) domains. Dimeric scDb were also formed by fragments possessing a long linker M and linkers A and B of 0 or 1 residue. We assume that these dimeric scDb are formed by intrachain pairing of the central variable domains and interchain pairing of the flanking variable domains. Thus, the latter molecules represent a novel format of bispecific and tetravalent molecules. The described strategy allows for the isolation of both optimized and minimal linker sequences for the assembly of monomeric or dimeric single-chain diabodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号