首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary The PET122 protein is one of three Saccharomyces cerevisiae nuclear gene products required specifically to activate translation of the mitochondrially coded COX3 mRNA. We have previously observed that mutations which remove the carboxy-terminal region of PET122 block translation of the COX3 mRNA but can be suppressed by unlinked nuclear mutations in several genes, two of which have been shown to code for proteins of the small subunit of mitochondrial ribosomes. Here we describe and map two more new genes identified as allele-specific suppressors that compensate for carboxy-terminal truncation of PET122. One of these genes, MRP17, is essential for the expression of all mitochondrial genes and encodes a protein of Mr 17343. The MRP17 protein is a component of the small ribosomal subunit in mitochondria, as demonstrated by the fact that a missense mutation, mrp17-1, predicted to cause a charge change indeed alters the charge of a mitochondrial ribosomal protein of the expected size. In addition, mrp17-1, in combination with some mutations affecting another mitochondrial ribosomal protein, caused a synthetic defective phenotype. These findings are consistent with a model in which PET122 functionally interacts with the ribosomal small subunit. The second new suppressor gene described here, PET127, encodes a protein too large (Mr 95900) to be a ribosomal protein and appears to operate by a different mechanism. PET127 is not absolutely required for mitochondrial gene expression and allele-specific suppression of pet122 mutations results from the loss of PET127 function: a pet127 deletion exhibited the same recessive suppressor activity as the original suppressor mutation. These findings suggest the possibility that PET127 could be a novel component of the mitochondrial translation system with a role in promoting accuracy of translational initiation.  相似文献   

2.
Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.  相似文献   

3.
Mitochondrial diseases associated with mutations within mitochondrial genome are a subgroup of metabolic disorders since their common consequence is reduced metabolic efficiency caused by impaired oxidative phophorylation and shortage of ATP. Although the vast majority of mitochondrial proteins (approximately 1500) is encoded by nuclear genome, mtDNA encodes 11 subunits of respiratory chain complexes, 2 subunits of ATP synthase, 22 tRNAs and 2 rRNAs. Up to now, more than 250 pathogenic mutations have been described within mtDNA. The most common are point mutations in genes encoding mitochondrial tRNAs such as 3243A-->G and 8344T-->G that cause, respectively, MELAS (mitochondrial encephalopathy, lactic acidosis and stroke-like episodes) or MIDD (maternally-inherited diabetes and deafness) and MERRF (myoclonic epilepsy with ragged red fibres) syndromes. There have been also found mutations in genes encoding subunits of ATP synthase such as 8993T-->G substitution associated with NARP (neuropathy, ataxia and retinitis pigmentosa) syndrome. It is worth to note that mitochondrial dysfunction can also be caused by mutations within nuclear genes coding for mitochondrial proteins.  相似文献   

4.
Breast Cancer is a complex multifactorial disease for which high-penetrance mutations have been identified. Approaches used to date have identified genomic features explaining about 50% of breast cancer heritability. A number of low- to medium penetrance alleles (per-allele odds ratio < 1.5 and 4.0, respectively) have been identified, suggesting that the remaining heritability is likely to be explained by the cumulative effect of such alleles and/or by rare high-penetrance alleles. Relatively few studies have specifically explored the mitochondrial genome for variants potentially implicated in breast cancer risk. For these reasons, we propose an exploration of the variability of the mitochondrial genome in individuals diagnosed with breast cancer, having a positive breast cancer family history but testing negative for BRCA1/2 pathogenic mutations. We sequenced the mitochondrial genome of 436 index breast cancer cases from the GENESIS study. As expected, no pathogenic genomic pattern common to the 436 women included in our study was observed. The mitochondrial genes MT-ATP6 and MT-CYB were observed to carry the highest number of variants in the study. The proteins encoded by these genes are involved in the structure of the mitochondrial respiration chain, and variants in these genes may impact reactive oxygen species production contributing to carcinogenesis. More functional and epidemiological studies are needed to further investigate to what extent variants identified may influence familial breast cancer risk.  相似文献   

5.
Hearing loss (HL) is a common disorder with mitochondrial dysfunction as one of the major causes leading to deafness. Mitochondrial dysfunction may be caused by either mutations in nuclear genes leading to defective nuclear-encoded proteins or mutations in mitochondrial genes leading to defective mitochondrial-encoded products. The specific nuclear genes involved in HL can be classified into two categories depending on whether mitochondrial gene mutations co-exist (modifier genes) or not (deafness-causing genes). TFB1M, MTO1, GTPBP3, and TRMU are modifier genes. A mutation in any of these modifier genes may lead to a deafness phenotype when accompanied by the mitochondrial gene mutation. OPA1, TIMM8A, SMAC/DIABLO, MPV17, PDSS1, BCS1L, SUCLA2, C10ORF2, COX10, PLOG1and RRM2B are deafness-causing genes. A mutation in any of these deafness-causing genes will directly induce variable phenotypic HL.  相似文献   

6.
E Kirches 《Current Genomics》2009,10(4):281-293
Although the observation of aerobic glycolysis of tumor cells by Otto v. Warburg had demonstrated abnormalities of mitochondrial energy metabolism in cancer decades ago, there was no clear evidence for a functional role of mutant mitochondrial proteins in cancer development until the early years of the 21st century. In the year 2000, a major breakthrough was achieved by the observation, that several genes coding for subunits of the respiratory chain (ETC) complex II, succinate dehydrogenase (SDH) are tumor suppressor genes in heritable paragangliomas, fulfilling Knudson’s classical two-hit hypothesis. A functional inactivation of both alleles by germline mutations and chromosomal losses in the tumor tissue was found in the patients. Later, SDH mutations were also identified in sporadic paragangliomas and pheochromocytomas. Genes of the mitochondrial ATP-synthase and of mitochondrial iron homeostasis have been implicated in cancer development at the level of cell culture and mouse experiments. In contrast to the well established role of some nuclear SDH genes, a functional impact of the mitochondrial genome itself (mtDNA) in cancer development remains unclear. Nevertheless, the extremely high frequency of mtDNA mutations in solid tumors raises the question, whether this small circular genome might be applicable to early cancer detection. This is a meaningful approach, especially in cancers, which tend to spread tumor cells early into bodily fluids or faeces, which can be screened by non-invasive methods.  相似文献   

7.
The translation of genes encoded in the mitochondrial genome requires specific machinery that functions in the organelle. Among the many mutations linked to human disease that affect mitochondrial translation, several are localized to nuclear genes coding for mitochondrial aminoacyl-transfer RNA synthetases. The molecular significance of these mutations is poorly understood, but it is expected to be similar to that of the mutations affecting mitochondrial transfer RNAs. To better understand the molecular features of diseases caused by these mutations, and to improve their diagnosis and therapeutics, we have constructed a Drosophila melanogaster model disrupting the mitochondrial seryl-tRNA synthetase by RNA interference. At the molecular level, the knockdown generates a reduction in transfer RNA serylation, which correlates with the severity of the phenotype observed. The silencing compromises viability, longevity, motility and tissue development. At the cellular level, the knockdown alters mitochondrial morphology, biogenesis and function, and induces lactic acidosis and reactive oxygen species accumulation. We report that administration of antioxidant compounds has a palliative effect of some of these phenotypes. In conclusion, the fly model generated in this work reproduces typical characteristics of pathologies caused by mutations in the mitochondrial aminoacylation system, and can be useful to assess therapeutic approaches.  相似文献   

8.
9.
MRP20 and MRP49 are proteins of the large subunit of the mitochondrial ribosome in Saccharomyces cerevisiae. Their genes were identified through immunological screening of a genomic library in the expression vector lambda gt11. Nucleotide sequencing revealed that MRP49 is tightly linked to TPK3 and encodes a 16-kDa, basic protein with no significant relatedness to any other known protein. MRP20 specifies a 263-amino-acid polypeptide with sequence similarity to members of the L23 family of ribosomal proteins. The levels of the mRNAs and proteins for both MRP20 and MRP49 were regulated in response to carbon source. In [rho0] strains lacking mitochondrial rRNA, the levels of the two proteins were reduced severalfold, presumably because the unassembled proteins are unstable. Null mutants of MRP20 converted to [rho-] or [rho0], a characteristic phenotype of mutations in essential genes for mitochondrial translation. Inactivation of MRP49 caused a cold-sensitive respiration-deficient phenotype, indicating that MRP49 is not an essential ribosomal protein. The mrp49 mutants were defective in the assembly of stable 54 S ribosomal subunits at the nonpermissive temperature. With the results presented here, there are now published sequences for 14 yeast mitochondrial ribosomal proteins, only five of which bear discernable relationships to eubacterial ribosomal proteins.  相似文献   

10.
11.
P. Haffter  T. W. McMullin    T. D. Fox 《Genetics》1991,127(2):319-326
Expression of the Saccharomyces cerevisiae mitochondrial gene coding cytochrome c oxidase subunit III is specifically activated at the level of translation by at least three nuclear genes, PET122, PET494 and PET54. We have shown previously that carboxy-terminal deletions of PET122 are allele-specifically suppressed by mutations in an unlinked nuclear gene, termed PET123, that encodes a small subunit ribosomal protein. Here we describe additional pet122 suppressors generated by mutations in a second gene which we show to be the previously identified nuclear gene MRP1. Like PET123, MRP1 encodes a component of the small subunit of mitochondrial ribosomes. Our mrp1 mutations are allele-specific suppressors of carboxyl-terminal truncations of the PET122 protein and do not bypass the requirement for residual function of PET122. None of our mrp1 mutations has an intrinsic phenotype in an otherwise wild-type background. However, some of the mrp1 mutations cause a non-conditional respiratory-defective phenotype in combination with certain pet123 alleles. This synthetic defective phenotype suggests that the ribosomal proteins PET123 and MRP1 interact functionally with each other. The fact that they can both mutate to suppress certain alleles of the mRNA-specific translational activator PET122 strongly suggests that the PET122 protein promotes translation of the coxIII mRNA via an interaction with the small subunit of mitochondrial ribosomes.  相似文献   

12.
13.
Genetic variants of mitochondrial DNA at the individual (heteroplasmy) and population (polymorphism) levels provide insight into their roles in multiple cellular and evolutionary processes. However, owing to the paucity of genome-wide data at the within-individual and population levels, the broad patterns of these two forms of variation remain poorly understood. Here, we analyze 1,804 complete mitochondrial genome sequences from Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Extensive heteroplasmy is observed in D. obtusa, where the high level of intraclonal divergence must have resulted from a biparental-inheritance event, and recombination in the mitochondrial genome is apparent, although perhaps not widespread. Global samples of D. pulex reveal remarkably low mitochondrial effective population sizes, <3% of those for the nuclear genome. In addition, levels of population diversity in mitochondrial and nuclear genomes are uncorrelated across populations, suggesting an idiosyncratic evolutionary history of mitochondria in D. pulex. These population-genetic features appear to be a consequence of background selection associated with highly deleterious mutations arising in the strongly linked mitochondrial genome, which is consistent with polymorphism and divergence data suggesting a predominance of strong purifying selection. Nonetheless, the fixation of mildly deleterious mutations in the mitochondrial genome also appears to be driving positive selection on genes encoded in the nuclear genome whose products are deployed in the mitochondrion.  相似文献   

14.
Breast cancer is a heterogeneous disease and genetic factors play an important role in its genesis. Although mutations in tumor suppressors and oncogenes encoded by the nuclear genome are known to play a critical role in breast tumorigenesis, the contribution of the mitochondrial genome to this process is unclear. Like the nuclear genome, the mitochondrial genome also encodes proteins critical for mitochondrion functions such as oxidative phosphorylation (OXPHOS), which is known to be defective in cancer including breast cancer. Mitochondrial DNA (mtDNA) is more susceptible to mutations due to limited repair mechanisms compared to nuclear DNA (nDNA). Thus changes in mitochondrial genes could also contribute to the development of breast cancer. In this review we discuss mtDNA mutations that affect OXPHOS. Continuous acquisition of mtDNA mutations and selection of advantageous mutations ultimately leads to generation of cells that propagate uncontrollably to form tumors. Since irreversible damage to OXPHOS leads to a shift in energy metabolism towards enhanced aerobic glycolysis in most cancers, mutations in mtDNA represent an early event during breast tumorigenesis, and thus may serve as potential biomarkers for early detection and prognosis of breast cancer. Because mtDNA mutations lead to defective OXPHOS, development of agents that target OXPHOS will provide specificity for preventative and therapeutic agents against breast cancer with minimal toxicity.  相似文献   

15.
The human mitochondrial genome, although small in size, shows a high level of variation that differs across nucleotide groups. In this work, mutation rates in mtDNA were compared in species of the Homo genus, including humans, Neanderthals, Denisova hominins, and other primate species. It was found that more than half (56.5%) of the polymorphisms in protein-coding genes of human mtDNA are actually reverse mutations to the pre-H. sapiens state of the mitochondrial genome. Among hypervariable nucleotide positions, only a small portion of mutations are specific to H. sapiens, while the majority of mutations (both nucleotide and amino acid substitutions) result in a loss of Homo-specific variants of polymorphisms. Most commonly, polymorphism variants specific to H. sapiens arise as a result of unique forward mutations and disappear mainly due to multiple reverse mutations, including those in mutational hot spots.  相似文献   

16.
To survive damage to the genome, cells must respond by activating both DNA repair and checkpoint responses. Using genetic screens in the fission yeast Schizosaccharomyces pombe, we recently isolated new genes required for DNA damage checkpoint control. We show here that one of these strains defines a new allele of the previously described rad18 gene, rad18-74. rad18 is an essential gene, even in the absence of extrinsic DNA damage. It encodes a conserved protein related to the structural maintenance of chromosomes proteins. Point mutations in rad18 lead to defective DNA repair pathways responding to both UV-induced lesions and, as we show here, double-stranded breaks. Furthermore, rad18p is required to maintain cell cycle arrest in the presence of DNA damage, and failure of this leads to highly aberrant mitoses. A gene encoding a BRCT-containing protein, brc1, was isolated as an allele-specific high-copy suppressor of rad18-74. brc1 is required for mitotic fidelity and for cellular viability in strains with rad18 mutations but is not essential for DNA damage responses. Mutations in rad18 and brc1 are synthetically lethal with a topoisomerase II mutant (top2-191), indicating that these proteins play a role in chromatin organization. These studies show a role for chromatin organization in the maintenance or activation of responses to DNA damage.  相似文献   

17.
Summary Complementation experiments with temperature sensitive (ts) and suppressor sensitive (sus) mutants of bacteriophage X174 unambiguously revealed five cistrons on the basis of a clear bipartition of burst sizes.A new group of sus mutants (emeralds) was found, defective in a function essential for growth in Shigella sonnei V64.The complementation between ts and sus mutants was in general asymmetric in that the yield of ts particles was lower than that of the sus particles. The mutants of one cistron (defective in RF-replication) showed a completely asymmetric complementation behaviour both of ts and sus mutants. The ts mutants of this group, which show to be early, appear to be defective in two functions.The possibility is discussed that in each cell only one phage genome is replicated. This would explain both kinds of asymmetric complementation and the low burst sizes that were obtained when mutants of particular genes were complemented.  相似文献   

18.
Ganoderma lucidum is one of the well-known medicinal basidiomycetes worldwide. The mitochondrion, referred to as the second genome, is an organelle found in most eukaryotic cells and participates in critical cellular functions. Elucidating the structure and function of this genome is important to understand completely the genetic contents of G. lucidum. In this study, we assembled the mitochondrial genome of G. lucidum and analyzed the differential expressions of its encoded genes across three developmental stages. The mitochondrial genome is a typical circular DNA molecule of 60,630 bp with a GC content of 26.67%. Genome annotation identified genes that encode 15 conserved proteins, 27 tRNAs, small and large rRNAs, four homing endonucleases, and two hypothetical proteins. Except for genes encoding trnW and two hypothetical proteins, all genes were located on the positive strand. For the repeat structure analysis, eight forward, two inverted, and three tandem repeats were detected. A pair of fragments with a total length around 5.5 kb was found in both the nuclear and mitochondrial genomes, which suggests the possible transfer of DNA sequences between two genomes. RNA-Seq data for samples derived from three stages, namely, mycelia, primordia, and fruiting bodies, were mapped to the mitochondrial genome and qualified. The protein-coding genes were expressed higher in mycelia or primordial stages compared with those in the fruiting bodies. The rRNA abundances were significantly higher in all three stages. Two regions were transcribed but did not contain any identified protein or tRNA genes. Furthermore, three RNA-editing sites were detected. Genome synteny analysis showed that significant genome rearrangements occurred in the mitochondrial genomes. This study provides valuable information on the gene contents of the mitochondrial genome and their differential expressions at various developmental stages of G. lucidum. The results contribute to the understanding of the functions and evolution of fungal mitochondrial DNA.  相似文献   

19.
Mitochondrial DNA replication was examined in mutants for seven different Saccharomyces cerevisiae genes which are essential for nuclear DNA replication. In cdc8 and cdc21, mutants defective in continued replication during the S phase of the cell cycle, mitochondrial DNA replication ceases at the nonpermissive temperature. Replication is temperature sensitive even when these mutants are arrested in the G1 phase of the cell cycle with α factor, a condition where mitochondrial DNA replication continues for the equivalent of several generations at the permissive temperature. Therefore the cessation of replication results from a defect in mitochondrial replication per se, rather than from an indirect consequence of cells being blocked in a phase of the cell cycle where mitochondrial DNA is not normally synthesized. Since the temperature-sensitive mutations are recessive, the products of genes cdc8 and cdc21 must be required for both nuclear and mitochondrial DNA replication. In contrast to cdc8 and cdc21, mitochondrial DNA replication continues for a long time at the nonpermissive temperature in five other cell division cycle mutants in which nuclear DNA synthesis ceases within one cell cycle: cdc4, cdc7, and cdc28, which are defective in the initiation of nuclear DNA synthesis, and cdc14 and cdc23, which are defective in nuclear division. The products of these genes, therefore, are apparently not required for the initiation of mitochondrial DNA replication.  相似文献   

20.
Wang P  Lyman RF  Shabalina SA  Mackay TF  Anholt RR 《Genetics》2007,177(3):1655-1665
Adaptive evolution of animals depends on behaviors that are essential for their survival and reproduction. The olfactory system of Drosophila melanogaster has emerged as one of the best characterized olfactory systems, which in addition to a family of odorant receptors, contains an approximately equal number of odorant-binding proteins (OBPs), encoded by a multigene family of 51 genes. Despite their abundant expression, little is known about their role in chemosensation, largely due to the lack of available mutations in these genes. We capitalized on naturally occurring mutations (polymorphisms) to gain insights into their functions. We analyzed the sequences of 13 Obp genes in two chromosomal clusters in a population of wild-derived inbred lines, and asked whether polymorphisms in these genes are associated with variation in olfactory responsiveness. Four polymorphisms in 3 Obp genes exceeded the statistical permutation threshold for association with responsiveness to benzaldehyde, suggesting redundancy and/or combinatorial recognition by these OBPs of this odorant. Model predictions of alternative pre-mRNA secondary structures associated with polymorphic sites suggest that alterations in Obp mRNA structure could contribute to phenotypic variation in olfactory behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号