首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre‐eminent system for the study of selective pressures that arise from host–pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population‐genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles.  相似文献   

2.
The extraordinary polymorphism of major histocompatibility complex (MHC) genes is considered a paradigm of pathogen‐mediated balancing selection, although empirical evidence is still scarce. Furthermore, the relative contribution of balancing selection to shape MHC population structure and diversity, compared to that of neutral forces, as well as its interaction with other evolutionary processes such as hybridization, remains largely unclear. To investigate these issues, we analyzed adaptive (MHC‐DAB gene) and neutral (11 microsatellite loci) variation in 156 brown trout (Salmo trutta complex) from six wild populations in central Italy exposed to introgression from domestic hatchery lineages (assessed with the LDH gene). MHC diversity and structuring correlated with those at microsatellites, indicating the substantial role of neutral forces. However, individuals carrying locally rare MHC alleles/supertypes were in better body condition (a proxy of individual fitness/parasite load) regardless of the zygosity status and degree of sequence dissimilarity of MHC, hence supporting balancing selection under rare allele advantage, but not heterozygote advantage or divergent allele advantage. The association between specific MHC supertypes and body condition confirmed in part this finding. Across populations, MHC allelic richness increased with increasing admixture between native and domestic lineages, indicating introgression as a source of MHC variation. Furthermore, introgression across populations appeared more pronounced for MHC than microsatellites, possibly because initially rare MHC variants are expected to introgress more readily under rare allele advantage. Providing evidence for the complex interplay among neutral evolutionary forces, balancing selection, and human‐mediated introgression in shaping the pattern of MHC (functional) variation, our findings contribute to a deeper understanding of the evolution of MHC genes in wild populations exposed to anthropogenic disturbance.  相似文献   

3.
4.
Aim Most studies of avian insular adaptations have focused on oceanic islands, which may not allow characters that are insular adaptations to be teased apart from those that benefit dispersal and colonization. Using birds on continental islands, we investigated characters that evolved in situ in response to insular environments created by late Pleistocene sea level rise. Location Trinidad and Tobago and continental South America. Methods We weighed fresh flight muscles and measured museum skeletal specimens of seven species of birds common to the continental islands of Trinidad and Tobago. Results When corrected for body size, study species exhibited significantly smaller flight muscles, sterna and sternal keels on Tobago than on larger Trinidad and continental South America. Tobago populations were more ‘insular’ in their morphologies than conspecifics on Trinidad or the continent in other ways as well, including having longer bills, longer wings, longer tails and longer legs. Main conclusions We hypothesize that the longer bills enhance foraging diversity, the longer wings and tails compensate for the smaller pectoral assemblage (allowing for retention of volancy, but with a probable reduction in flight power and speed), and the longer legs expand perching ability. Each of these differences is likely to be related to the lower diversity and fewer potential predators and competitors on Tobago compared with Trinidad. These patterns of smaller flight muscles and larger bills, legs, wings and tails in island birds are not the results of selection for island dispersal and colonization, but probably arose from selection pressures acting on populations already inhabiting these islands.  相似文献   

5.
Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species'' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC), play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga) populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations.  相似文献   

6.
Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite ‘susceptibility alleles’ were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation.  相似文献   

7.
Pathogen-driven balancing selection maintains high genetic diversity in many vertebrates, particularly in the major histocompatibility complex (MHC) immune system gene family, which is often associated with disease susceptibility. In large natural populations where subpopulations face different pathogen pressures, the MHC should show greater genetic differentiation within a species than neutral markers. We examined genetic diversity at the MHC-DQB locus and nine putatively neutral microsatellite markers in grey seals (Halichoerus grypus) from eight United Kingdom (UK) colonies, the Faeroe Islands and Sable Island, Canada. Five DQB alleles were identified in grey seals, which varied in prevalence across the grey seal range. Among the seal colonies, significant differences in DQB allele and haplotype frequencies and in average DQB heterozygosity were observed. Additionally, the DQB gene exhibited greater differentiation among colonies compared with neutral markers, yet a weaker pattern of isolation by distance (IBD). After correcting for the underlying IBD pattern, subpopulations breeding in similar habitats were more similar to one another in DQB allele frequencies than populations breeding in different habitats, but the same did not hold true for microsatellites, suggesting that habitat-specific pathogen pressure influences MHC evolution. Overall, the data are consistent with selection at MHC-DQB loci in grey seals with both varying selective pressures and geographic population structure appearing to influence the DQB genetic composition of breeding colonies.  相似文献   

8.
Determining how intra-specific genetic diversity is apportioned among natural populations is essential for detecting local adaptation and identifying populations with inherently low levels of extant diversity which may become a conservation concern. Sequence polymorphism at two adaptive loci (MHC DRA and DQB) was investigated in long-finned pilot whales (Globicephala melas) from four regions in the North Atlantic and compared with previous data from New Zealand (South Pacific). Three alleles were resolved at each locus, with trans-species allele sharing and higher levels of non-synonymous to synonymous substitution, especially in the DQB locus. Overall nucleotide diversities of 0.49?±?0.38% and 4.60?±?2.39% were identified for the DRA and DQB loci, respectively, which are relatively low for MHC loci in the North Atlantic, but comparable to levels previously described in New Zealand (South Pacific). There were significant differences in allele frequencies within the North Atlantic and between the North Atlantic and New Zealand. Patterns of diversity and divergence are consistent with the long-term effects of balancing selection operating on the MHC loci, potentially mediated through the effects of host-parasite coevolution. Differences in allele frequency may reflect variation in pathogen communities, coupled with the effects of differential drift and gene flow.  相似文献   

9.
The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection.  相似文献   

10.
Balancing selection is common on many defense genes, but it has rarely been reported for immune effector proteins such as antimicrobial peptides (AMPs). We describe genetic diversity at a brevinin-1 AMP locus in three species of leopard frogs (Rana pipiens, Rana blairi, and Rana palustris). Several highly divergent allelic lineages are segregating at this locus. That this unusual pattern results from balancing selection is demonstrated by multiple lines of evidence, including a ratio of nonsynonymous/synonymous polymorphism significantly higher than 1, the ZnS test, incongruence between the number of segregating sites and haplotype diversity, and significant Tajima's D values. Our data are more consistent with a model of fluctuating selection in which alleles change frequencies over time than with a model of stable balancing selection such as overdominance. Evidence for fluctuating selection includes skewed allele frequencies, low levels of synonymous variation, nonneutral values of Tajima's D within allelic lineages, an inverse relationship between the frequency of an allelic lineage and its degree of polymorphism, and divergent allele frequencies among populations. AMP loci could be important sites of adaptive genetic diversity, with consequences for host-pathogen coevolution and the ability of species to resist disease epidemics.  相似文献   

11.
Cutrera AP  Lacey EA 《Immunogenetics》2007,59(12):937-948
Balancing selection acting over the evolutionary history of a lineage can result in the retention of alleles among species for longer than expected under neutral evolution. The associated pattern of trans-species polymorphism, in which similar or even identical alleles are shared among species, is often used to infer that balancing selection has occurred. The genes of the major histocompatibility complex (MHC) are thought to be subject to balancing selection that maintains alleles associated with response to specific pathogens. To explore the role of balancing selection in shaping MHC diversity in ctenomyid rodents, we examined allelic variability at the class II DRB and DQA loci in 18 species in the genus Ctenomys. Previous studies of four of these species had revealed significant within-population evidence of positive selection on MHC loci. The current study expands upon these analyses to (1) evaluate among-species evidence of positive selection and (2) explore the potential for balancing selection on MHC genes. Interspecific nucleotide sequence variation revealed significant evidence of positive selection on the DRB and DQA loci. At the same time, comparisons of phylogenetic trees for these MHC loci with a putative species tree based on mitochondrial sequence data revealed multiple examples of trans-specific polymorphism, including sharing of identical DRB and DQA alleles among distantly related species of Ctenomys. These findings suggest that MHC genes in these animals have historically been subject to balancing selection and yield new insights into the complex suite of forces shaping MHC diversity in free-living vertebrates.  相似文献   

12.
The major histocompatibility complex (MHC) is integral to the vertebrate adaptive immune system. Characterizing diversity at functional MHC genes is invaluable for elucidating patterns of adaptive variation in wild populations, and is particularly interesting in species of conservation concern, which may suffer from reduced genetic diversity and compromised disease resilience. Here, we use next generation sequencing to investigate MHC class II B (MHCIIB) diversity in two sister taxa of New Zealand birds: South Island saddleback (SIS), Philesturnus carunculatus, and North Island saddleback (NIS), Philesturnus rufusater. These two species represent a passerine family outside the more extensively studied Passerida infraorder, and both have experienced historic bottlenecks. We examined exon 2 sequence data from populations that represent the majority of genetic diversity remaining in each species. A high level of locus co-amplification was detected, with from 1 to 4 and 3 to 12 putative alleles per individual for South and North Island birds, respectively. We found strong evidence for historic balancing selection in peptide-binding regions of putative alleles, and we identified a cluster combining non-classical loci and pseudogene sequences from both species, although no sequences were shared between the species. Fewer total alleles and fewer alleles per bird in SIS may be a consequence of their more severe bottleneck history; however, overall nucleotide diversity was similar between the species. Our characterization of MHCIIB diversity in two closely related species of New Zealand saddlebacks provides an important step in understanding the mechanisms shaping MHC diversity in wild, bottlenecked populations.  相似文献   

13.
Major histocompatibility complex (MHC) genes encode proteins that play a central role in vertebrates' adaptive immunity to parasites. MHC loci are among the most polymorphic in vertebrates' genomes, inspiring many studies to identify evolutionary processes driving MHC polymorphism within populations and divergence between populations. Leading hypotheses include balancing selection favouring rare alleles within populations, and spatially divergent selection. These hypotheses do not always produce diagnosably distinct predictions, causing many studies of MHC to yield inconsistent or ambiguous results. We suggest a novel strategy to distinguish balancing vs. divergent selection on MHC, taking advantage of natural admixture between parapatric populations. With divergent selection, individuals with immigrant alleles will be more infected and less fit because they are susceptible to novel parasites in their new habitat. With balancing selection, individuals with locally rare immigrant alleles will be more fit (less infected). We tested these contrasting predictions using three‐spine stickleback from three replicate pairs of parapatric lake and stream habitats. We found numerous positive and negative associations between particular MHC IIβ alleles and particular parasite taxa. A few allele–parasite comparisons supported balancing selection, and others supported divergent selection between habitats. But, there was no overall tendency for fish with immigrant MHC alleles to be more or less heavily infected. Instead, locally rare MHC alleles (not necessarily immigrants) were associated with heavier infections. Our results illustrate the complex relationship between MHC IIβ allelic variation and spatially varying multispecies parasite communities: different hypotheses may be concurrently true for different allele–parasite combinations.  相似文献   

14.
The fragmentation of populations typically enhances depletion of genetic variation, but highly polymorphic major histocompatibility complex (MHC) genes are thought to be under balancing selection and therefore retain polymorphism despite population bottlenecks. In this study, we investigate MHC DRB (class II) exon 2 variation in 14 spotted suslik populations from two regions differing in their degree of habitat fragmentation and gene flow. We found 16 alleles that segregated in a sample of 248 individuals. The alleles were highly divergent and revealed the hallmark signs of positive selection acting on them in the past, showing a significant excess of nonsynonymous substitutions. This excess was concentrated in putative antigen‐binding sites, which suggests that past selection was driven by pathogens. MHC diversity was significantly lower in fragmented western populations than in the eastern populations, characterized by significant gene flow. In contrast to neutral variation, amova did not reveal genetic differentiation between the two regions. This may indicate similar selective pressures shaping MHC variation in both regions until the recent past. However, MHC allelic richness within a population was correlated with that for microsatellites. FST outlier analyses have shown that population differentiation at DRB was neither higher nor lower than expected under neutrality. The results suggest that selection on MHC is not strong enough to counteract drift that results from recent fragmentation of spotted suslik populations.  相似文献   

15.
Apparent selection affecting starch gel electrophoretic alleles at the Esterase-2 locus of Drosophila buzzatii has been detected in laboratory and natural populations. Perturbation-reperturbation of allele frequencies in replicated laboratory populations attempts to test direct selective effects at the locus versus effects of linked loci. Sequential gel electrophoresis has identified more alleles within starch classes, and three of these alleles (within the a, b and c starch alleles) were used in cage population experiments. Allele a/1.00/1.00/1.00 was set up in 10 replicate populations with allele c/1.00/1.00/1.00, and in an independent 10 replicate populations with allele b/0.99/1.01/1.00. For each set, three reperturbations were done. Replicate populations generally showed similar patterns of allele frequency change and clear directionality: effects of selection, not drift. However, four populations deviated from their replicates, indicating dissipation of linkage disequilibrium. Estimates of pre-adult viability in the F2 of pair-wise crosses among 12 sequential gel electrophoretic alleles showed very variable modes of inheritance and relative viability fitnesses. Together with the diversity of patterns of allele frequency change in the cage populations, these results suggest a gene complex, with selection acting on an interacting set of loci which may include Esterase-2.  相似文献   

16.
The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans‐species evolution).  相似文献   

17.
Major histocompatibility complex (MHC) genes encode proteins that present pathogen-derived antigens to T-cells, initiating the adaptive immune response in vertebrates. Although populations with low MHC diversity tend to be more susceptible to pathogens, some bottlenecked populations persist and even increase in numbers despite low MHC diversity. Thus, the relative importance of MHC diversity versus genome-wide variability for the long-term viability of populations after bottlenecks and/or under high inbreeding is controversial. We tested the hypothesis that genome-wide inbreeding (estimated using microsatellites) should be more critical than MHC diversity alone in determining pathogen resistance in the self-fertilizing fish Kryptolebias marmoratus by analysing MHC diversity and parasite loads in natural and laboratory populations with different degrees of inbreeding. Both MHC and neutral diversities were lost after several generations of selfing, but we also found evidence of parasite selection acting on MHC diversity and of non-random loss of alleles, suggesting a possible selective advantage of those individuals with functionally divergent MHC, in accordance with the hypothesis of divergent allele advantage. Moreover, we found that parasite loads were better explained by including MHC diversity in the model than by genome-wide (microsatellites) heterozygosity alone. Our results suggest that immune-related overdominance could be the key in maintaining variables rates of selfing and outcrossing in K. marmoratus and other mixed-mating species.  相似文献   

18.
Elucidating the mechanism shaping the spatial variations of traits has long been a central concern of evolutionary biologists. Geographic clines of allele/morph frequencies along environmental gradients are suggested to be established and maintained by the balancing of two opposing evolutionary forces, namely selection that generates spatial differentiation in morph frequencies, and selection and/or stochastic factors that lead to the coexistence of multiple morphs within a population. Thus, testing for both selection and stochastic factors is necessary for a comprehensive understanding of the mechanism underlying clinal variation in morph/allele frequency in natural populations. Here, I identified the evolutionary forces responsible for clinal variation of color morph frequency in Ischnura senegalensis by comparing the population divergence of putatively neutral loci generated by high-throughput next-generation sequencing (F STn) with that of the putative color locus (F STc). No strong correlation was observed between F STn and F STc, suggesting that stochastic factors contribute less to color-locus population divergence. F STc was less than F STn between populations exposed to similar environmental conditions, but greater than F STn between populations exposed to different environmental conditions, suggesting that both balancing selection and divergent selection act on the color locus. Therefore, two antagonistic selection factors rather than stochastic and historical factors contribute to establishing the clinal variation of morph frequency in I. senegalensis.  相似文献   

19.
Maintaining effective immune response is an essential factor in the survival of small populations. One of the most important immune gene regions is the highly polymorphic major histocompatibility complex (MHC). We investigated how a population bottleneck and recovery have influenced the diversity and selection in three MHC class II loci, DLA‐DRB1, DLA‐DQA1 and DLA‐DQB1, in the Finnish wolf population. We studied the larger Russian Karelian wolf population for comparison and used 17 microsatellite markers as reference loci. The Finnish and Karelian wolf populations did not differ substantially in their MHC diversities ( = 0.047, P = 0.377), but differed in neutral microsatellite diversities ( = 0.148, P = 0.008). MHC allele frequency distributions in the Finnish population were more even than expected under neutrality, implying balancing selection. In addition, an excess of nonsynonymous compared to synonymous polymorphisms indicated historical balancing selection. We also studied association between helminth (Trichinella spp. and Echinococcus canadensis) prevalence and MHC diversity at allele and SNP level. MHC‐heterozygous wolves were less often infected by Trichinella spp. and carriers of specific MHC alleles, SNP haplotypes and SNP alleles had less helminth infections. The associated SNP haplotypes and alleles were shared by different MHC alleles, which emphasizes the necessity of single‐nucleotide‐level association studies also in MHC. Here, we show that strong balancing selection has had similar effect on MHC diversities in the Finnish and Russian Karelian wolf populations despite significant genetic differentiation at neutral markers and small population size in the Finnish population.  相似文献   

20.
Evidence of selection acting on major histocompatibility complex (MHC) genes has been illustrated with the analysis of their nucleotide sequences and allele frequency distribution. Comparing the patterns of population differentiation at neutral markers and MHC genes in the wild may provide further insights about the relative role of selection and neutrality in shaping their diversity. In this study, we combine both methods to assess the role of selection on a MHC gene in Atlantic salmon. We compare variation at a MHC class II B locus and microsatellites among 14 samples from seven different rivers and seven subpopulations within a single river system covering a variety of habitats and different geographical scales. We show that diversifying selection is acting on the sites involved in antigen presentation and that balancing selection maintains a high level of polymorphism within populations. Despite important differences in habitat type, the comparison of the population structure at MHC and microsatellites on large geographical scales reveals a correlation between patterns of differentiation, indicating that drift and migration have been more important than selection in shaping population differentiation at the MHC locus. In contrast, strong discrepancies between patterns of population differentiation at the two types of markers provides support for the role of selection in shaping population structure within rivers. Together, these results confirm that natural selection is influencing MHC gene diversity in wild Atlantic salmon although neutral forces may also be important in their evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号