首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Postsynaptic receptor scaffold proteins play an important role for concentrating receptor molecules in postsynaptic membranes of central nervous system synapses. In particular, clustering of glycine receptors and different types of GABAA-receptors depends on the scaffold protein gephyrin, which is thought to anchor these receptors to the cytoskeleton. Eukaryotic elongation factor 1A (eEF1A) is a component of the protein synthesis machinery. In addition, it binds and bundles actin and was shown to interact with microtubules. Therefore, it might be involved in regulating the cytoskeletal dynamics in neurons and thereby modulate receptor cluster formation and/or maintenance. In this study, we demonstrate partial colocalization of gephyrin and F-actin along filamentous structures in rat hippocampal neurons. Overexpression of eEF1A in cultured hippocampal neurons results in a significant increase in number, size and density of postsynaptic gephyrin clusters after 21 days in vitro. These findings suggest that eEF1A contributes to the morphology of postsynaptic membrane specializations at inhibitory synapses.  相似文献   

2.
CDK5 has been implicated in neural functions including growth, neuronal migration, synaptic transmission and plasticity of excitatory chemical synapses. Here we report robust effects of CDK5 on phosphorylation of the postsynaptic scaffold protein gephyrin and clustering of inhibitory GABAA receptors in hippocampal neurons. shRNA-mediated knockdown of CDK5 and pharmacological inhibition of cyclin-dependent kinases reduced phosphorylated gephyrin clusters and postsynaptic γ2-containing GABAA receptors. Phosphorylation of S270 is antagonized by PP1/PP2a phosphatase and site-directed mutagenesis and in vitro phosphorylation experiments indicate that S270 is a putative CDK5 phosphorylation site of gephyrin. Our data suggest that CDK5 plays an essential role for the stability of gephyrin-dependent GABAA receptor clusters in hippocampal neurons.  相似文献   

3.
Super‐resolution imaging has revealed that key synaptic proteins are dynamically organized within sub‐synaptic domains (SSDs). To examine how different inhibitory receptors are regulated, we carried out dual‐color direct stochastic optical reconstruction microscopy (dSTORM) of GlyRs and GABAARs at mixed inhibitory synapses in spinal cord neurons. We show that endogenous GlyRs and GABAARs as well as their common scaffold protein gephyrin form SSDs that align with pre‐synaptic RIM1/2, thus creating trans‐synaptic nanocolumns. Strikingly, GlyRs and GABAARs occupy different sub‐synaptic spaces, exhibiting only a partial overlap at mixed inhibitory synapses. When network activity is increased by 4‐aminopyridine treatment, the GABAAR copy numbers and the number of GABAAR SSDs are reduced, while GlyRs remain largely unchanged. This differential regulation is likely the result of changes in gephyrin phosphorylation that preferentially occurs outside of SSDs. The activity‐dependent regulation of GABAARs versus GlyRs suggests that different signaling pathways control the receptors'' sub‐synaptic clustering. Taken together, our data reinforce the notion that the precise sub‐synaptic organization of GlyRs, GABAARs, and gephyrin has functional consequences for the plasticity of mixed inhibitory synapses.  相似文献   

4.
GABAA receptor subunit composition is a critical determinant of receptor localization and physiology, with synaptic receptors generating phasic inhibition and extrasynaptic receptors producing tonic inhibition. Extrasynaptically localized α5 GABAA receptors are largely responsible for tonic inhibition in hippocampal neurons. However, we show here that inhibitory synapses also contain a constant level of α5 GABAA receptors throughout neuronal development, as measured by its colocalization with gephyrin, the inhibitory postsynaptic scaffolding protein. Immunoprecipitation of the α5 subunit from both cultured neurons and adult rat brain coimmunoprecipitated gephyrin, confirming this interaction in vivo. Furthermore, the α5 subunit can interact with gephyrin independent of other synaptically localized alpha subunits, as shown by immunoprecipitation experiments in HEK cells. By replacing the α5 predicted gephyrin binding domain (Residues 370–385) with either the high affinity gephyrin binding domain of the α2 subunit or homologous residues from the extrasynaptic α4 subunit that does not interact with gephyrin, α5 GABAA receptor localization shifted into or out of the synapse, respectively. These shifts in the ratio of synaptic/extrasynaptic α5 localization disrupted dendritic outgrowth and spine maturation. In contrast to the predominant view of α5 GABAA receptors being extrasynaptic and modulating tonic inhibition, we identify an intimate association of the α5 subunit with gephyrin, resulting in constant synaptic levels of α5 GABAAR throughout circuit formation that regulates neuronal development. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1241–1251, 2015  相似文献   

5.
Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons and was required for the development of inhibitory synapses onto interneurons. IgSF9b formed a subsynaptic domain distinct from the GABAA receptor– and gephyrin-containing domain, as indicated by super-resolution imaging. IgSF9b was linked to neuroligin 2, an inhibitory synaptic adhesion molecule coupled to gephyrin, via the multi-PDZ protein S-SCAM. IgSF9b and neuroligin 2 could reciprocally cluster each other. These results suggest a novel mode of inhibitory synaptic organization in which two subsynaptic domains, one containing IgSF9b for synaptic adhesion and the other containing gephyrin and GABAA receptors for synaptic transmission, are interconnected through S-SCAM and neuroligin 2.  相似文献   

6.
Fast synaptic inhibition in the adult brain is largely mediated by GABAA receptors (GABAAR). GABAAR are anchored to synaptic sites by gephyrin, a scaffolding protein that appears to be assembled as a hexagonal lattice beneath the plasma membrane. Brain derived neurotrophic factor (BDNF) alters the clustering and synaptic distribution of GABAAR but mechanisms behind this regulation are just starting to emerge. The current study was aimed to examine if BDNF alters the protein levels and/or clustering of gephyrin and to investigate whether the modulation of gephyrin is accompanied by changes in the distribution and/or clustering of GABAAR. Exogenous application of BDNF to immature neuronal cultures from rat hippocampus increased the protein levels and clustering of gephyrin. BDNF also augmented the association of gephyrin with GABAAR and promoted the formation of GABAAR clusters. Together, these observations indicate that BDNF might regulate the assembly of GABAergic synapses by promoting the association of GABAAR with gephyrin.  相似文献   

7.
Growth-associated protein 43 (GAP43) is known to regulate axon growth, but whether it also plays a role in synaptogenesis remains unclear. Here, we found that GAP43 regulates the aggregation of gephyrin, a pivotal protein for clustering postsynaptic GABAA receptors (GABAARs), in developing cortical neurons. Pharmacological blockade of either protein kinase C (PKC) or neuronal activity increased both GAP43-gephyrin association and gephyrin misfolding-induced aggregation, suggesting the importance of PKC-dependent regulation of GABAergic synapses. Furthermore, we found that PKC phosphorylation-resistant GAP43S41A, but not PKC phosphorylation-mimicking GAP43S41D, interacted with cytosolic gephyrin to trigger gephyrin misfolding and its sequestration into aggresomes. In contrast, GAP43S41D, but not GAP43S41A, inhibited the physiological aggregation/clustering of gephyrin, reduced surface GABAARs under physiological conditions, and attenuated gephyrin misfolding under transient oxygen-glucose deprivation (tOGD) that mimics pathological neonatal hypoxia. Calcineurin-mediated GAP43 dephosphorylation that accompanied tOGD also led to GAP43-gephyrin association and gephyrin misfolding. Thus, PKC-dependent phosphorylation of GAP43 plays a critical role in regulating postsynaptic gephyrin aggregation in developing GABAergic synapses.  相似文献   

8.
Inhibition in the mature central nervous system is mediated by activation of γ-aminobutyric acid (GABAA) and glycine receptors. Both receptors belong to the same superfamily of ligand-gated ion channels and share common transmembrane topology and structural and functional features. Glycine receptors are pentameric ligand-gated anion channels composed of two different subunits, named α und β, that assemble with a fixed stoichiometric ratio of two α to three β subunits. Four genes encoding the α subunits exist, whereas only one gene encoding the β subunit has been detected. Ligand binding occurs at the interface of α and β subunits. The β subunit, which is unable to form homo-oligomeric receptors, is responsible for assembly and channel properties. Moreover, this subunit carries a binding motif for the cytoplasmic protein gephyrin, which is believed to mediate synaptic clustering and anchoring at inhibitory synapses by interacting with the subsynaptic cytoskeleton. Synaptic gephyrin appears to restrict the mobility of glycine receptors diffusing in the plane of the plasma membrane, thereby generating dynamic plasma membrane domains contributing to the plasticity of inhibitory synapses. Glycine receptors are well established as playing important roles in controlling motor functions and sensory signaling in vision and audition and those in the dorsal horn of the spinal cord are now considered to be new targets for pain therapies. Like GABAA receptors, glycine receptors have been shown to be depolarizing during development. The functional meaning of the developmental switch from excitatory to inhibitory glycine receptor action remains to be elucidated.  相似文献   

9.
γ-Aminobutyric acid type A (GABAA) receptors are pentameric ligand-gated ion channels that mediate fast inhibition in the central nervous system. Depending on their subunit composition, these receptors exhibit distinct pharmacological properties and differ in their ability to interact with proteins involved in receptor anchoring at synaptic or extra-synaptic sites. Whereas GABAA receptors containing α1, α2, or α3 subunits are mainly located synaptically where they interact with the submembranous scaffolding protein gephyrin, receptors containing α5 subunits are predominantly found extra-synaptically and seem to interact with radixin for anchorage. Neuroplastin is a cell adhesion molecule of the immunoglobulin superfamily that is involved in hippocampal synaptic plasticity. Our results reveal that neuroplastin and GABAA receptors can be co-purified from rat brain and exhibit a direct physical interaction as demonstrated by co-precipitation and Förster resonance energy transfer (FRET) analysis in a heterologous expression system. The brain-specific isoform neuroplastin-65 co-localizes with GABAA receptors as shown in brain sections as well as in neuronal cultures, and such complexes can either contain gephyrin or be devoid of gephyrin. Neuroplastin-65 specifically co-localizes with α1 or α2 but not with α3 subunits at GABAergic synapses. In addition, neuroplastin-65 also co-localizes with GABAA receptor α5 subunits at extra-synaptic sites. Down-regulation of neuroplastin-65 by shRNA causes a loss of GABAA receptor α2 subunits at GABAergic synapses. These results suggest that neuroplastin-65 can co-localize with a subset of GABAA receptor subtypes and might contribute to anchoring and/or confining GABAA receptors to particular synaptic or extra-synaptic sites, thus affecting receptor mobility and synaptic strength.  相似文献   

10.
Gephyrin and collybistin are key components of GABAA receptor (GABAAR) clustering. Nonetheless, resolving the molecular interactions between the plethora of GABAAR subunits and these clustering proteins is a significant challenge. We report a direct interaction of GABAAR α2 and α3 subunit intracellular M3–M4 domain (but not α1, α4, α5, α6, β1–3, or γ1–3) with gephyrin. Curiously, GABAAR α2, but not α3, binds to both gephyrin and collybistin using overlapping sites. The reciprocal binding sites on gephyrin for collybistin and GABAAR α2 also overlap at the start of the gephyrin E domain. This suggests that although GABAAR α3 interacts with gephyrin, GABAAR α2, collybistin, and gephyrin form a trimeric complex. In support of this proposal, tri-hybrid interactions between GABAAR α2 and collybistin or GABAAR α2 and gephyrin are strengthened in the presence of gephyrin or collybistin, respectively. Collybistin and gephyrin also compete for binding to GABAAR α2 in co-immunoprecipitation experiments and co-localize in transfected cells in both intracellular and submembrane aggregates. Interestingly, GABAAR α2 is capable of “activating ” collybistin isoforms harboring the regulatory SH3 domain, enabling targeting of gephyrin to the submembrane aggregates. The GABAAR α2-collybistin interaction was disrupted by a pathogenic mutation in the collybistin SH3 domain (p.G55A) that causes X-linked intellectual disability and seizures by disrupting GABAAR and gephyrin clustering. Because immunohistochemistry in retina revealed a preferential co-localization of collybistin with α2 subunit containing GABAARs, but not GlyRs or other GABAAR subtypes, we propose that the collybistin-gephyrin complex has an intimate role in the clustering of GABAARs containing the α2 subunit.  相似文献   

11.
Alzheimer’s disease (AD) is the leading progressive neurodegenerative disorder afflicting 35.6 million people worldwide. There is no therapeutic agent that can slow or stop the progression of AD. Human studies show that besides loss of cognition/learning ability, neuropsychological symptoms such as anxiety and seizures are seen as high as 70 and 17 % respectively in AD patients, suggesting dysfunction of GABAergic neurotransmission contributes to pathogenesis of AD. Dihydromyricetin (DHM) is a plant flavonoid and a positive allosteric modulator of GABAARs we developed recently (Shen et al. in J Neurosci 32(1):390–401, 2012 [1]). In this study, transgenic (TG2576) and Swedish transgenic (TG-SwDI) mice with AD-like pathology were treated with DHM (2 mg/kg) for 3 months. Behaviorally, DHM-treated mice show improved cognition, reduced anxiety level and seizure susceptibility. Pathologically, DHM has high efficacy to reduce amyloid-β (Aβ) peptides in TG-SwDI brain. Further, patch-clamp recordings from dentate gyrus neurons in hippocampal slices from TG-SwDI mice showed reduced frequency and amplitude of GABAAR-mediated miniature inhibitory postsynaptic currents, and decreased extrasynaptic tonic inhibitory current, while DHM restored these GABAAR-mediated currents in TG-SwDI. We found that gephyrin, a postsynaptic GABAAR anchor protein that regulates the formation and plasticity of GABAergic synapses, decreased in hippocampus and cortex in TG-SwDI. DHM treatment restored gephyrin levels. These results suggest that DHM treatment not only improves symptoms, but also reverses progressive neuropathology of mouse models of AD including reducing Aβ peptides, while restoring gephyrin levels, GABAergic transmission and functional synapses. Therefore DHM is a promising candidate medication for AD. We propose a novel target, gephyrin, for treatment of AD.  相似文献   

12.
Postsynaptic scaffold proteins immobilize neurotransmitter receptors in the synaptic membrane opposite to presynaptic vesicle release sites, thus ensuring efficient synaptic transmission. At inhibitory synapses in the spinal cord, the main scaffold protein gephyrin assembles in dense molecule clusters that provide binding sites for glycine receptors (GlyRs). Gephyrin and GlyRs can also interact outside of synapses, where they form receptor-scaffold complexes. Although several models for the formation of postsynaptic scaffold domains in the presence of receptor-scaffold interactions have been advanced, a clear picture of the coupled dynamics of receptors and scaffold proteins at synapses is lacking. To characterize the GlyR and gephyrin dynamics at inhibitory synapses, we performed fluorescence time-lapse imaging after photoconversion to directly visualize the exchange kinetics of recombinant Dendra2-gephyrin in cultured spinal cord neurons. Immuno-immobilization of endogenous GlyRs with specific antibodies abolished their lateral diffusion in the plasma membrane, as judged by the lack of fluorescence recovery after photobleaching. Moreover, the cross-linking of GlyRs significantly reduced the exchange of Dendra2-gephyrin compared with control conditions, suggesting that the kinetics of the synaptic gephyrin pool is strongly dependent on GlyR-gephyrin interactions. We did not observe any change in the total synaptic gephyrin levels after GlyR cross-linking, however, indicating that the number of gephyrin molecules at synapses is not primarily dependent on the exchange of GlyR-gephyrin complexes. We further show that our experimental data can be quantitatively accounted for by a model of receptor-scaffold dynamics that includes a tightly interacting receptor-scaffold domain, as well as more loosely bound receptor and scaffold populations that exchange with extrasynaptic pools. The model can make predictions for single-molecule data such as typical dwell times of synaptic proteins. Taken together, our data demonstrate the reciprocal stabilization of GlyRs and gephyrin at inhibitory synapses and provide a quantitative understanding of their dynamic organization.  相似文献   

13.
A group of central auditory neurons residing in the lateral superior olivary nucleus (LSO) responds selectively to interaural level differences and may contribute to sound localization. In this simple circuit, ipsilateral sound increases firing of LSO neurons, whereas contralateral sound inhibits the firing rate via activation of the medial nucleus of the trapezoid body (MNTB). During development, individual MNTB fibers arborize within the LSO, but they undergo a restriction of their boutons that ultimately leads to mature topography. A critical issue is whether a distinct form of inhibitory synaptic plasticity contributes to MNTB synapse elimination within LSO. Whole-cell recording from LSO neurons in brain slices from developing gerbils show robust long-term depression (LTD) of the MNTB-evoked IPSP/Cs when the MNTB was activated at a low frequency (1 Hz). These inhibitory synapses also display mixed GABA/glycinergic transmission during development, as assessed physiologically and immunohistochemically (Kotak et al. 1998). While either glycine or GABAA receptors could independently display inhibitory LTD, focal delivery of GABA, but not glycine, at the postsynaptic-locus induces depression. Furthermore, the GABAB receptor antagonist, SCH-50911, prevents GABA or synaptically induced depression. Preliminary evidence also indicated strengthening of inhibitory transmission (LTP) by a distinct pattern of inhibitory activity. These data support the idea that GABA is crucial for the expression inhibitory LTD and that this plasticity may underlie the early refinement of inhibitory synaptic connections in the LSO.  相似文献   

14.
Gephyrin is a bifunctional modular protein that, in neurons, clusters glycine receptors and gamma-aminobutyric acid, type A receptors in the postsynaptic membrane of inhibitory synapses. By x-ray crystallography and cross-linking, the N-terminal G-domain of gephyrin has been shown to form trimers and the C-terminal E-domain dimers, respectively. Gephyrin therefore has been proposed to form a hexagonal submembranous lattice onto which inhibitory receptors are anchored. Here, crystal structure-based substitutions at oligomerization interfaces revealed that both G-domain trimerization and E-domain dimerization are essential for the formation of higher order gephyrin oligomers and postsynaptic gephyrin clusters. Insertion of the alternatively spliced C5' cassette into the G-domain inhibited clustering by interfering with trimerization, and mutation of the glycine receptor beta-subunit binding region prevented the localization of the clusters at synaptic sites. Together our findings show that domain interactions mediate gephyrin scaffold formation.  相似文献   

15.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.  相似文献   

16.
The dynamics of postsynaptic receptor scaffold formation and remodeling at inhibitory synapses remain largely unknown. Gephyrin, which is a multimeric scaffold protein, interacts with cytoskeletal elements and stabilizes glycine receptors (GlyRs) and individual subtypes of gamma-aminobutyric acid A receptors at inhibitory postsynaptic sites. We report intracellular mobility of gephyrin transports packets over time. Gephyrin units enter and exit active synapses within several minutes. In addition to previous reports of GlyR-gephyrin interactions at plasma membranes, we show cosedimentation and coimmunoprecipitation of both proteins from vesicular fractions. Moreover, GlyR and gephyrin are cotransported within neuronal dendrites and further coimmunoprecipitate and colocalize with the dynein motor complex. As a result, the blockade of dynein function or dynein-gephyrin interaction, as well as the depolymerization of microtubules, interferes with retrograde gephyrin recruitment. Our data suggest a GlyR-gephyrin-dynein transport complex and support the concept that gephyrin-motor interactions contribute to the dynamic and activity-dependent rearrangement of postsynaptic GlyRs, a process thought to underlie the regulation of synaptic strength.  相似文献   

17.
Recent advances in imaging technology have highlighted that scaffold proteins and receptors are arranged in subsynaptic nanodomains. The synaptic membrane-associated guanylate kinase (MAGUK) scaffold protein membrane protein palmitoylated 2 (MPP2) is a component of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor–associated protein complexes and also binds to the synaptic cell adhesion molecule SynCAM 1. Using superresolution imaging, we show that—like SynCAM 1—MPP2 is situated at the periphery of the postsynaptic density (PSD). In order to explore MPP2-associated protein complexes, we used a quantitative comparative proteomics approach and identified multiple γ-aminobutyric acid (GABA)A receptor subunits among novel synaptic MPP2 interactors. In line with a scaffold function for MPP2 in the assembly and/or modulation of intact GABAA receptors, manipulating MPP2 expression had effects on inhibitory synaptic transmission. We further show that GABAA receptors are found together with MPP2 in a subset of dendritic spines and thus highlight MPP2 as a scaffold that serves as an adaptor molecule, linking peripheral synaptic elements critical for inhibitory regulation to central structures at the PSD of glutamatergic synapses.

This study shows that the MAGUK scaffold protein MPP2 is located at the periphery of postsynaptic densities in excitatory neurons, where it interacts with GABA-A receptors, thereby serving as a functional adaptor that links excitatory and inhibitory components of synaptic transmission at glutamatergic synapses.  相似文献   

18.
In the present study, an optimized Transmission Electron Microscopy Color Imaging (TEMCI) procedure was used to map and quantify the pathways involved in the trafficking and subcellular targeting of gephyrin in identified abducens motoneurons. Gephyrin is a scaffolding protein, which plays a crucial role in the clustering of the GABAA and glycine receptors to the cytoskeleton. TEMCI associated several accurate tools: (i) nanogold immunodetection of gephyrin in motoneurons identified on the basis of their immunoreactivity to Choline Acetyl Transferase, (ii) low magnification color scale coding of gephyrin densities on series of ultrathin sections of motoneurons, which gave a map of the cytoplasmic distribution of the protein, (iii) statistical analysis of the subcellular distribution of the immunolabeling. The color map of gephyrin densities in the cell bodies reflected the distribution of inhibitory synapses over the membrane. The TEMCI analysis of motoneurons with various patterns of synaptic covering made it possible to visualize for the first time the cytoplasmic transport pathway of gephyrin towards its target at synaptic contact. A high magnification quantitative analysis, including the study of 109 inhibitory synapses, showed that most gephyrin-associated immunogold particles (67%) were located in the subsynaptic regions facing the active zones, and the second most densely occupied regions were the perisynaptic regions (19.5% of immunogold particles). A consistent proportion of the gephyrin (11.5%), significantly higher than densities present in the rest of the cytoplasm (2%), was detected in the extrasynaptic submembrane region.  相似文献   

19.
The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found that neurons lacking the BEACH (beige-Chediak/Higashi) domain protein Neurobeachin (Nbea) had strongly reduced synaptic responses caused by a reduction in surface levels of glutamate and GABAA receptors. In the absence of Nbea, immature AMPA receptors accumulated early in the biosynthetic pathway, and mature N-methyl-d-aspartate, kainate, and GABAA receptors did not reach the synapse, whereas maturation and surface expression of other membrane proteins, synapse formation, and presynaptic function were unaffected. These data show that Nbea regulates synaptic transmission under basal conditions by targeting neurotransmitter receptors to synapses.  相似文献   

20.

Background

The ventral horn is a major substrate in mediating the immobilizing properties of the volatile anesthetic sevoflurane in the spinal cord. In this neuronal network, action potential firing is controlled by GABAA and glycine receptors. Both types of ion channels are sensitive to volatile anesthetics, but their role in mediating anesthetic-induced inhibition of spinal locomotor networks is not fully understood.

Methodology/Principal Findings

To compare the effects of sevoflurane on GABAergic and glycinergic inhibitory postsynaptic currents (IPSCs) whole-cell voltage-clamp recordings from ventral horn interneurons were carried out in organotypic spinal cultures. At concentrations close to MAC (minimum alveolar concentration), decay times of both types of IPSCs were significantly prolonged. However, at 1.5 MAC equivalents, GABAergic IPSCs were decreased in amplitude and reduced in frequency. These effects counteracted the prolongation of the decay time, thereby decreasing the time-averaged GABAergic inhibition. In contrast, amplitudes and frequency of glycinergic IPSCs were not significantly altered by sevoflurane. Furthermore, selective GABAA and glycine receptor antagonists were tested for their potency to reverse sevoflurane-induced inhibition of spontaneous action potential firing in the ventral horn. These experiments confirmed a weak impact of GABAA receptors and a prominent role of glycine receptors at a high sevoflurane concentration.

Conclusions

At high concentrations, sevoflurane mediates neuronal inhibition in the spinal ventral horn primarily via glycine receptors, and less via GABAA receptors. Our results support the hypothesis that the impact of GABAA receptors in mediating the immobilizing properties of volatile anesthetics is less essential in comparison to glycine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号