首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cancer stem-like cell (CSC; also known as tumor initiating cell) is defined as a small subpopulation of cancer cells within a tumor and isolated from various primary tumors and cancer cell lines. CSCs are highly tumorigenic and resistant to anticancer treatments. In this study, we found that prolonged exposure to tumor necrosis factor alpha (TNFα), a major proinflammatory cytokine, enhances CSC phenotype of oral squamous cell carcinoma (OSCC) cells, such as an increase in tumor sphere-forming ability, stem cell-associated genes expression, chemo-radioresistance, and tumorigenicity. Moreover, activation of Notch1 signaling was detected in the TNFα-exposed cells, and suppression of Notch1 signaling inhibited CSC phenotype. Furthermore, we demonstrated that inhibition of a Notch downstream target, Hes1, led to suppression of CSC phenotype in the TNFα-exposed cells. We also found that Hes1 expression is commonly upregulated in OSCC lesions compared to precancerous dysplastic lesions, suggesting the possible involvement of Hes1 in OSCC progression and CSC in vivo. In conclusion, inflammatory cytokine exposure may enhance CSC phenotype of OSCC, in part by activating the Notch-Hes1 pathway.  相似文献   

3.
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence, and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity, and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b, and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein.  相似文献   

4.
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy. However, the molecular mechanisms underlying HGSOC development, progression, chemotherapy insensitivity and resistance remain unclear. Two independent GEO datasets, including the gene expression profile of primary ovarian carcinoma and normal controls, were analyzed to identify genes related to HGSOC development and progression. A KEGG pathway analysis of the differentially expressed genes (DEGs) revealed that the cell cycle pathway was the most enriched pathway, among which TTK protein kinase (TTK) was the only gene with a clinical-grade inhibitor that has been investigated in a clinical trial but had not been studied in HGSOC. TTK was also upregulated in cisplatin-resistant ovarian cancer cells from two other datasets. TTK is a regulator of spindle assembly checkpoint signaling, playing an important role in cell cycle control and tumorigenesis in various cancers. However, the function and regulatory mechanism of TTK in HGSOC remain to be determined. In this study, we observed TTK upregulation in patients with HGSOC. High TTK expression was related to a poor prognosis. Genetic and pharmacological inhibition of TTK impeded the proliferation of ovarian cancer cells by disturbing cell cycle progression and increasing apoptosis. TTK silencing increased cisplatin sensitivity by activating the mammalian target of rapamycin (mTOR) complex to further suppress cisplatin-induced autophagy in vitro. In addition, the enhanced sensitivity was partially diminished by rapamycin-mediated inhibition of mTOR in TTK knockdown cells. Furthermore, TTK knockdown increased the toxicity of cisplatin in vivo by decreasing autophagy. These findings suggest that the administration of TTK inhibitors in combination with cisplatin may lead to improved response rates to cisplatin in patients with HGSOC presenting high TTK expression. In summary, our study may provide a theoretical foundation for using the combination therapy of cisplatin and TTK inhibitors as a treatment for HGSOC in the future.Subject terms: Chemotherapy, Targeted therapies, Autophagy, Diagnostic markers  相似文献   

5.
Rad50 is a component of MRN (Mre11-Rad50-Nbs1), which participates in DNA double-strand break repair and DNA-damage checkpoint activation. Here, we sought to investigate the clinical and functional significance of Rad50 in high-grade serous ovarian cancer (HGSOC). We found that Rad50 was frequently upregulated in HGSOCs and enhanced Rad50 expression inversely correlated with patient survival. In addition, ectopic expression of Rad50 promoted proliferation/invasion and induced EMT of ovarian cancer cells, whereas knockdown of Rad50 led to decreased aggressive behaviors. Mechanistic investigations revealed that Rad50 induced aggressiveness in HGSOC via activation of NF-κB signaling pathway. Moreover, we identified CARD9 as an interacting protein of Rad50 in ovarian cancer cells and the activation of NF-κB pathway by Rad50 is CARD9 dependent. Our findings provide evidence that Rad50 exhibits oncogenic property via NF-κB activation in HGSOC.  相似文献   

6.
7.
8.
It is becoming increasingly evident that cancer stem cells play a vital role in development and progression of cancers and relapse following chemotherapy. The present study examines the presence of cancer stem-like cells (CSC) in adenomatous polyps and in normal appearing colonic mucosa in humans during aging. The number of polyps was found to increase linearly with advancing age (r2 = 0.92, p < 0.02). Immunohistochemical analysis revealed co-localization of CSC markers CD44 and CD166 in colonic polyps. Real-time RT-PCR analysis of normal appearing mucosa from subjects with adenomatous polyps showed an age-related rise in CSC as evidenced by the increased expression of CD44, CD166 and ESA. A similar phenomenon was also observed for EGFR. In addition, the expression each CSC marker was found to be about 2-fold higher in subjects with 3–4 polyps than those with 1–2 polyps. In conclusion, our results show that colon cancer stem-like cells are present in the premalignant adenomatous polyps as well in normal appearing colonic mucosa. Moreover, our observation of the age-related rise in CSC in macroscopically normal colonic mucosa suggests a predisposition of the organ to developing colorectal cancer.  相似文献   

9.
Cancer stem cells (CSCs) are linked to metastasis. Moreover, a discrete group of miRNAs (metastamiRs) has been shown to promote metastasis. Accordingly, we propose that miRNAs that function as metastatic promoters may influence the CSC phenotype. To study this issue, we compared the expression of 353 miRNAs in CSCs enriched from breast cancer cell lines using qRT–PCR analysis. One of the most altered miRNAs was miR‐10b, which is a reported promoter of metastasis and migration. Stable overexpression of miR‐10b in MCF‐7 cells (miR‐10b‐OE cells) promoted higher self‐renewal and expression of stemness and epithelial–mesenchymal transition (EMT) markers. In agreement with these results, inhibiting miR‐10b expression using synthetic antisense RNAs resulted in a decrease in CSCs self‐renewal. Bioinformatics analyses identified several potential miR‐10b mRNA targets, including phosphatase and tensin homolog (PTEN), a key regulator of the PI3K/AKT pathway involved in metastasis, cell survival, and self‐renewal. The targeting of PTEN by miR‐10b was confirmed using a luciferase reporter, qRT–PCR, and Western blot analyses. Lower PTEN levels were observed in CSCs, and miR‐10b depletion not only increased PTEN mRNA and protein expression but also decreased the activity of AKT, a downstream PTEN target kinase. Correspondingly, PTEN knockdown increased stem cell markers, whereas AKT inhibitors compromised the self‐renewal ability of CSCs and breast cancer cell lines overexpressing miR‐10b. In conclusion, miR‐10b regulates the self‐renewal of the breast CSC phenotype by inhibiting PTEN and maintaining AKT pathway activation.  相似文献   

10.
Cancer stem-like side population (SP) cells have been identified in many solid tumors; however, most of these investigations are performed using established cancer cell lines. Cancer cells in tumor tissue containing fibroblasts and many other types of cells are much more complex than any cancer cell line. Although SP cells were identified in the laryngeal squamous cell carcinoma (LSCC) cell line Hep-2 in our pilot study, it is unknown whether the LSCC tissue contains SP cells. In this study, LSCC cells (LSCCs) were primary cultured and purified from a surgically resected LSCC specimen derived from a well-differentiated epiglottic neoplasm of a Chinese male. This was followed by the verification of epithelium-specific characteristics, such as ultrastructure and biomarkers. A distinct SP subpopulation (4.45±1.07%) was isolated by Hoechst 33342 efflux analysis from cultured LSCCs by using a flow cytometer. Cancer stem cell (CSC)-associated assays, including expression of self-renewal and CSC marker genes, proliferation, differentiation, spheroid formation, chemotherapy resistance, and tumorigenicity were then conducted between SP and non-SP (NSP) LSCCs. In vitro and in vivo assays revealed that SP cells manifested preferential expression of self-renewal and CSC marker genes, higher capacity for proliferation, differentiation, and spheroid formation; enhanced resistance to chemotherapy; and greater xenograft tumorigenicity in immunodeficient mice compared with NSP cells. These findings suggest that the primary cultured and purified LSCCs contain cancer stem-like SP cells, which may serve as a valuable model for CSC research in LSCC.  相似文献   

11.
Our previous studies have shown that the Adipose-derived mesenchymal stem cells (ADSCs) can regulate metastasis and development of ovarian cancer. However, its specific mechanism has yet to be fully revealed. In this study, an RNA-seq approach was adopted to compare the differences in mRNA levels in ovarian cancer cells being given or not given ADSCs. The mRNA level of paired box 8 (PAX8) changed significantly and was confirmed as an important factor in tumour-inducing effect of ADSCs. In comparison with the ovarian cancer cells cultured in the common growth medium, those cultured in the medium supplemented with ADSCs showed a significant increase of the PAX8 level. Moreover, the cancer cell growth could be restricted, even in the ADSC-treated group (P < .05), by inhibiting PAX8. In addition, an overexpression of PAX8 could elevate the proliferation of ovarian cancer cells. Moreover, Co-IP assays in ovarian cancer cells revealed that an interaction existed between endogenous PAX8 and TAZ. And the PAX8 levels regulated the degradation of TAZ. The bioluminescence images captured in vivo manifested that the proliferation and the PAX8 expression level in ovarian cancers increased in the ADMSC-treated group, and the effect of ADSCs in promoting tumours was weakened through inhibiting PAX8. Our findings indicate that the PAX8 expression increment could contribute a role in promoting the ADSC-induced ovarian cancer cell proliferation through TAZ stability regulation.  相似文献   

12.

Background

Tumor cells with stem-like phenotype and properties, known as cancer stem cells (CSC), have been identified in most solid tumors and are presumed to be responsible for driving tumor initiation, chemoresistance, relapse, or metastasis. A subpopulation of cells with increased stem-like potential has also been identified within sarcomas. These cells are endowed with increased tumorigenic potential, chemoresistance, expression of embryonic markers, and side population(SP) phenotype. Leiomyosarcomas (LMS) are soft tissue sarcomas presumably arising from undifferentiated cells of mesenchymal origin, the Mesenchymal Stem Cells (MSC). Frequent recurrence of LMS and chemoresistance of relapsed patients may likely result from the failure to target CSC. Therefore, therapeutic cues coming from the cancer stem cell (CSC) field may drastically improve patient outcome.

Methodology/Principal Findings

We expanded LMS stem-like cells from patient samples in vitro and examined the possibility to counteract LMS malignancy through a stem-like cell effective approach. LMS stem-like cells were in vitro expanded both as “tumor spheres” and as “monolayers” in Mesenchymal Stem Cell (MSC) conditions. LMS stem-like cells displayed MSC phenotype, higher SP fraction, and increased drug-extrusion, extended proliferation potential, self-renewal, and multiple differentiation ability. They were chemoresistant, highly tumorigenic, and faithfully reproduced the patient tumor in mice. Such cells displayed activation of EGFR/AKT/MAPK pathways, suggesting a possibility in overcoming their chemoresistance through EGFR blockade. IRESSA plus Vincristine treatment determined pathway inactivation, impairment of SP phenotype, high cytotoxicity in vitro and strong antitumor activity in stem-like cell-generated patient-like xenografts, targeting both stem-like and differentiated cells.

Conclusions/Significance

EGFR blockade combined with vincristine determines stem-like cell effective antitumor activity in vitro and in vivo against LMS, thus providing a potential therapy for LMS patients.  相似文献   

13.
Ovarian cancer (OC) is the one of the most common cancer in women globally. However, it still represents the most dangerous gynecologic malignancy even with the advances in detection and therapeutics. Thus, there is an urgent need in finding more effective therapeutic options for OC patients including cancer stem cells (CSC). MicroRNAs (miRNAs) are small, endogenous, and non-coding RNAs that play critical roles in the progression of various types of tumor. Our aim of this study was to find the regulatory function of microRNA-26 (miRNA- 26b) on the cell proliferation and apoptosis of ovarian CSCs. Our studies show that miR-26b is under-regulated in human CD117+CD44+ ovarian CSCs. The miR-26b overexpression inhibits the cell proliferation and promotes cell apoptosis. Moreover, phosphatase and tensin homolog (PTEN) is found to be a functional target of miR-26b. Moreover, PTEN overexpression reversed the effects of miR-26b on cell proliferation and apoptosis. PTEN overexpression remarkably accelerated cell proliferation, and inhibited cell apoptosis. These results indicate that MiR-26b regulates cell proliferation and apoptosis of CD117+CD44+ ovarian CSCs by targeting PTEN.Key words: miR-26b, PTEN, ovarian cancer stem cells (CSCs), cell proliferation, apoptosis  相似文献   

14.

Background

The existence of cancer stem cells (CSCs) or cancer stem-like cells in a tumor mass is believed to be responsible for tumor recurrence because of their intrinsic and extrinsic drug-resistance characteristics. Therefore, targeted killing of CSCs would be a newer strategy for the prevention of tumor recurrence and/or treatment by overcoming drug-resistance. We have developed a novel synthetic compound-CDF, which showed greater bioavailability in animal tissues such as pancreas, and also induced cell growth inhibition and apoptosis, which was mediated by inactivation of NF-κB, COX-2, and VEGF in pancreatic cancer (PC) cells.

Methodology/Principal Findings

In the current study we showed, for the first time, that CDF could significantly inhibit the sphere-forming ability (pancreatospheres) of PC cells consistent with increased disintegration of pancreatospheres, which was associated with attenuation of CSC markers (CD44 and EpCAM), especially in gemcitabine-resistant (MIAPaCa-2) PC cells containing high proportion of CSCs consistent with increased miR-21 and decreased miR-200. In a xenograft mouse model of human PC, CDF treatment significantly inhibited tumor growth, which was associated with decreased NF-κB DNA binding activity, COX-2, and miR-21 expression, and increased PTEN and miR-200 expression in tumor remnants.

Conclusions/Significance

These results strongly suggest that the anti-tumor activity of CDF is associated with inhibition of CSC function via down-regulation of CSC-associated signaling pathways. Therefore, CDF could be useful for the prevention of tumor recurrence and/or treatment of PC with better treatment outcome in the future.  相似文献   

15.
Epithelial mesenchymal transition (EMT) and cancer stem cells (CSC) have been associated with resistance to chemotherapy. Eighty percent of ovarian cancer patients initially respond to platinum-based combination therapy but most return with recurrence and ultimate demise. To better understand such chemoresistance we have assessed the potential role of EMT in tumor cells collected from advanced-stage ovarian cancer patients and the ovarian cancer cell line OVCA 433 in response to cisplatin in vitro. We demonstrate that cisplatin-induced transition from epithelial to mesenchymal morphology in residual cancer cells correlated with reduced E-cadherin, and increased N-cadherin and vimentin expression. The mRNA expression of Snail, Slug, Twist, and MMP-2 were significantly enhanced in response to cisplatin and correlated with increased migration. This coincided with increased cell surface expression of CSC-like markers such as CD44, α2 integrin subunit, CD117, CD133, EpCAM, and the expression of stem cell factors Nanog and Oct-4. EMT and CSC-like changes in response to cisplatin correlated with enhanced activation of extracellular signal-regulated kinase (ERK)1/2. The selective MEK inhibitor U0126 inhibited ERK2 activation and partially suppressed cisplatin-induced EMT and CSC markers. In vivo xenotransplantation of cisplatin-treated OVCA 433 cells in zebrafish embryos demonstrated significantly enhanced migration of cells compared to control untreated cells. U0126 inhibited cisplatin-induced migration of cells in vivo, suggesting that ERK2 signaling is critical to cisplatin-induced EMT and CSC phenotypes, and that targeting ERK2 in the presence of cisplatin may reduce the burden of residual tumor, the ultimate cause of recurrence in ovarian cancer patients.  相似文献   

16.
Cancer stem cells (CSCs) or tumor-initiating cells are thought to play critical roles in tumorigenesis, metastasis, drug resistance, and tumor recurrence. For the diagnosis and targeted therapy of CSCs, the molecular identity of biomarkers or therapeutic targets for CSCs needs to be clarified. In this study, we identified CD166 as a novel marker expressed in the sphere-forming CSC population of A2780 epithelial ovarian cancer cells and primary ovarian cancer cells. The CD166+ cells isolated from A2780 cells and primary ovarian cancer cells highly expressed CSC markers, including ALDH1a1, OCT4, and SOX2, and ABC transporters, which are implicated in the drug resistance of CSCs. The CD166+ cells exhibited enhanced CSC-like properties, such as increased sphere-forming ability, cell migration and adhesion abilities, resistance to conventional anti-cancer drugs, and high tumorigenic potential in a xenograft mouse model. Knockdown of CD166 expression in the sphere-forming ovarian CSCs abrogated their CSC-like properties. Moreover, silencing of CD166 expression in the sphere-forming CSCs suppressed the phosphorylation of focal adhesion kinase, paxillin, and SRC. These results suggest that CD166 plays a key role in the regulation of CSC-like properties and focal adhesion kinase signaling in ovarian cancer.  相似文献   

17.
Aging is associated with increased incidence of colon cancers. It is also becoming evident that cancer stem cells (CSC) play a vital role in the pathogenesis and prognosis of colon cancer. Recently, we reported the presence of colon cancer stem-like cells in macroscopically normal mucosa in patients with adenomatous polyps and that they increase with aging, suggesting that aging may predispose the colon to carcinogenesis. In the current study we have examined the combined effects of aging and carcinogen exposure on the status of colon CSCs in an experimental model. We used young (4-6 months) and aged (22-24 months) rats and exposed them to the carcinogen, dimethylhydroxide (DMH). We investigated the expression of colon cancer stem cell markers, CD44, CD166, EpCam, and ALDH1 as well as EGFR expression in normal colonic crypt epithelium following carcinogen treatment. Our results demonstrate that aging per se or carcinogen treatment alone causes an increase in the number of colon cancer stems cells, as evidenced by increased immunoreactive-CSC-markers positive cells in the colonic mucosa. In aged rats, carcinogen exposure results in a more pronounced increase in colon cancer stem cells. Our study shows that in aging colon the effects of carcinogens are more pronounced, and an increase in colon CSCs is one of the earliest changes preceding tumor development. Moreover, the current investigation of the use of a panel of immunohistochemical markers of colon CSC can potentially serve as a prognostic marker during screening for colon cancer.  相似文献   

18.

Background

TP53 and BRCA1/2 mutations are the main drivers in high-grade serous ovarian carcinoma (HGSOC). We hypothesise that combining tissue phenotypes from image analysis of tumour sections with genomic profiles could reveal other significant driver events.

Results

Automatic estimates of stromal content combined with genomic analysis of TCGA HGSOC tumours show that stroma strongly biases estimates of PTEN expression. Tumour-specific PTEN expression was tested in two independent cohorts using tissue microarrays containing 521 cases of HGSOC. PTEN loss or downregulation occurred in 77% of the first cohort by immunofluorescence and 52% of the validation group by immunohistochemistry, and is associated with worse survival in a multivariate Cox-regression model adjusted for study site, age, stage and grade. Reanalysis of TCGA data shows that hemizygous loss of PTEN is common (36%) and expression of PTEN and expression of androgen receptor are positively associated. Low androgen receptor expression was associated with reduced survival in data from TCGA and immunohistochemical analysis of the first cohort.

Conclusion

PTEN loss is a common event in HGSOC and defines a subgroup with significantly worse prognosis, suggesting the rational use of drugs to target PI3K and androgen receptor pathways for HGSOC. This work shows that integrative approaches combining tissue phenotypes from images with genomic analysis can resolve confounding effects of tissue heterogeneity and should be used to identify new drivers in other cancers.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0526-8) contains supplementary material, which is available to authorized users.  相似文献   

19.
Cancer/testis antigens (CTAs) are often aberrantly expressed in cancer stem cells (CSCs) which are responsible for tumor metastasis. Rec8 meiotic recombination protein (REC8), a member of CTAs, shares distinct roles in various cancers, while its contribution to CSCs and colorectal cancer (CRC) remains unclear. We found that overexpression of REC8 facilitated the migration and invasion of CRC cells (DLD-1 and SW480 cells) in vitro and promoted the liver metastasis of CRC in vivo. Moreover, REC8 is highly expressed in CRC stem-like cells and is required for the maintenance of CSC stemness. Mechanistic studies suggested that REC8 mediated through the activation of Bruton tyrosine kinase (BTK). Inhibition of BTK by ibrutinib not only suppressed the migration and invasion-promoting ability, but also declined the increased expression of p-BTK, p-Akt, β-catenin, and CSC markers upon REC8 overexpression. Importantly, high expression of REC8 in cancerous tissues was related to advanced clinical stage and lymph node metastasis of 62 CRC patients, and REC8 was enriched in the cancerous cells positive for CSC markers. Collectively, our results indicate that REC8 promotes CRC metastasis by increasing cell stemness through BTK/Akt/β-catenin pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号