首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Social groups often consist of diverse phenotypes, including personality types, and this diversity is known to affect the functioning of the group as a whole. Social selection theory proposes that group composition (i.e. social environment) also influences the performance of individual group members. However, the effect of group behavioural composition on group members remains largely unexplored, and it is still contentious whether individuals benefit more in a social environment with homogeneous or diverse behavioural composition. We experimentally formed groups of house sparrows Passer domesticus with high and low diversity of personality (exploratory behaviour), and found that their physiological state (body condition, physiological stress and oxidative damage) improved with increasing group-level diversity of personality. These findings demonstrate that group personality composition affects the condition of group members and individuals benefit from social heterosis (i.e. associating with a diverse set of behavioural types). This aspect of the social life can play a key role in affiliation rules of social animals and might explain the evolutionary coexistence of different personalities in nature.  相似文献   

3.
Intestinal microbial community structure is driven by host genetics in addition to environmental factors such as diet. In comparison with environmental influences, the effect of host genetics on intestinal microbiota, and how host-driven differences alter host metabolism is unclear. Additionally, the interaction between host genetics and diet, and the impact on the intestinal microbiome and possible down-stream effect on host metabolism is not fully understood, but represents another aspects of inter-individual variation in disease risk. The objectives of this study were to investigate how diet and genetic background shape microbial communities, and how these diet- and genetic-driven microbial differences relate to cardiometabolic phenotypes. To determine these effects, we used the 8 progenitor strains of the collaborative cross/diversity outbred mapping panels (C57BL/6J, A/J, NOD/ShiLtJ, NZO/HILtJ, WSB/EiJ, CAST/EiJ, PWK/PhJ, and 129S1/SvImJ). 16s rRNA profiling of enteric microbial communities in addition to the assessment of phenotypes central to cardiometabolic health was conducted under baseline nutritional conditions and in response to diets varying in atherogenic nutrient (fat, cholesterol, cholic acid) composition. These studies revealed strain-driven differences in enteric microbial communities which were retained with dietary intervention. Diet–strain interactions were seen for a core group of cardiometabolic-related microbial taxa. In conclusion, these studies highlight diet and genetically regulated cardiometabolic-related microbial taxa. Furthermore, we demonstrate the progenitor model is useful for nutrigenomic-based studies and screens seeking to investigate the interaction between genetic background and the phenotypic and microbial response to diet.  相似文献   

4.
Little is known about the gastric mucosal microbiota in healthy horses, and its role in gastric disease has not been critically examined. The present study used a combination of 16S rRNA bacterial tag-encoded pyrosequencing (bTEFAP) and fluorescence in situ hybridization (FISH) to characterize the composition and spatial distribution of selected gastric mucosal microbiota of healthy horses. Biopsy specimens of the squamous, glandular, antral, and any ulcerated mucosa were obtained from 6 healthy horses by gastroscopy and from 3 horses immediately postmortem. Pyrosequencing was performed on biopsy specimens from 6 of the horses and yielded 53,920 reads in total, with 631 to 4,345 reads in each region per horse. The microbiome segregated into two distinct clusters comprised of horses that were stabled, fed hay, and sampled at postmortem (cluster 1) and horses that were pastured on grass, fed hay, and biopsied gastroscopically after a 12-h fast (cluster 2). The types of bacteria obtained from different anatomic regions clustered by horse rather than region. The dominant bacteria in cluster 1 were Firmicutes (>83% reads/sample), mainly Streptococcus spp., Lactobacillus spp. and, Sarcina spp. Cluster 2 was more diverse, with predominantly Proteobacteria, Bacteroidetes, and Firmicutes, consisting of Actinobacillus spp. Moraxella spp., Prevotella spp., and Porphyromonas spp. Helicobacter sp. sequences were not identified in any of 53,920 reads. FISH (n = 9) revealed bacteria throughout the stomach in close apposition to the mucosa, with significantly more Streptococcus spp. present in the glandular region of the stomach. The equine stomach harbors an abundant and diverse mucosal microbiota that varies by individual.  相似文献   

5.
Abundant and diverse fungal microbiota in the murine intestine   总被引:2,自引:0,他引:2  
Enteric microbiota play a variety of roles in intestinal health and disease. While bacteria in the intestine have been broadly characterized, little is known about the abundance or diversity of enteric fungi. This study utilized a culture-independent method termed oligonucleotide fingerprinting of rRNA genes (OFRG) to describe the compositions of fungal and bacterial rRNA genes from small and large intestines (tissue and luminal contents) of restricted-flora and specific-pathogen-free mice. OFRG analysis identified rRNA genes from all four major fungal phyla: Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. The largest assemblages of fungal rRNA sequences were related to the genera Acremonium, Monilinia, Fusarium, Cryptococcus/Filobasidium, Scleroderma, Catenomyces, Spizellomyces, Neocallimastix, Powellomyces, Entophlyctis, Mortierella, and Smittium and the order Mucorales. The majority of bacterial rRNA gene clones were affiliated with the taxa Bacteroidetes, Firmicutes, Acinetobacter, and Lactobacillus. Sequence-selective PCR analyses also detected several of these bacterial and fungal rRNA genes in the mouse chow. Fluorescence in situ hybridization analysis with a fungal small-subunit rRNA probe revealed morphologically diverse microorganisms resident in the mucus biofilm adjacent to the cecal and proximal colonic epithelium. Hybridizing organisms comprised about 2% of the DAPI (4',6-diamidino-2-phenylindole, dihydrochloride)-positive organisms in the mucus biofilm, but their abundance in fecal material may be much lower. These data indicate that diverse fungal taxa are present in the intestinal microbial community. Their abundance suggests that they may play significant roles in enteric microbial functions.  相似文献   

6.
The intestinal microbiota is known to regulate host energy homeostasis and can be influenced by high-calorie diets. However, changes affecting the ecosystem at the functional level are still not well characterized. We measured shifts in cecal bacterial communities in mice fed a carbohydrate or high-fat (HF) diet for 12 weeks at the level of the following: (i) diversity and taxa distribution by high-throughput 16S ribosomal RNA gene sequencing; (ii) bulk and single-cell chemical composition by Fourier-transform infrared- (FT-IR) and Raman micro-spectroscopy and (iii) metaproteome and metabolome via high-resolution mass spectrometry. High-fat diet caused shifts in the diversity of dominant gut bacteria and altered the proportion of Ruminococcaceae (decrease) and Rikenellaceae (increase). FT-IR spectroscopy revealed that the impact of the diet on cecal chemical fingerprints is greater than the impact of microbiota composition. Diet-driven changes in biochemical fingerprints of members of the Bacteroidales and Lachnospiraceae were also observed at the level of single cells, indicating that there were distinct differences in cellular composition of dominant phylotypes under different diets. Metaproteome and metabolome analyses based on the occurrence of 1760 bacterial proteins and 86 annotated metabolites revealed distinct HF diet-specific profiles. Alteration of hormonal and anti-microbial networks, bile acid and bilirubin metabolism and shifts towards amino acid and simple sugars metabolism were observed. We conclude that a HF diet markedly affects the gut bacterial ecosystem at the functional level.  相似文献   

7.
Ampicillin was included (25 mg/litre) in the drinking water supplied to growing rats over periods of 2,3,4,5,6,7 or 8 weeks. 32 rats were used in each experimental period, half being given the antibiotic and half being left as controls. The antibiotic increased the liveweight gain in each period, the results being significant after the 2- and 4-week feeding periods. Significant decreases were observed in the average percentage weights of the spleens of the rats given the antibiotic at the end of all the feeding periods except one. The few other significant changes in the percentage weights of other organs were, with one exception, noted at or before the end of the 4th week.  相似文献   

8.
Disequilibrium of the gut microbiota by dietary fat has been implicated in the incidence of overweight or obesity. However, it remains to be elucidated whether dietary fat perturbations in early life have long-lasting impacts on the gut microbiota and to what extent unbalanced diet-induced alterations in childhood are reversible. Accordingly, three groups of 1-day-old hens were used. They were fed with a low-fat diet (LFD), basal diet (BD) and high-fat diet (HFD), respectively, for 6 weeks and then switched to the same normal diets (NDs) for another 19 weeks. At week 6, hens in the LFD and HFD groups were found to have higher body weight, plasma glucose, total cholesterol, triglycerides and low-density lipoprotein cholesterol levels than their counterparts in the BD group, whereas upon switching to NDs, the metabolic deteriorations observed during the LFD consumption were alleviated. Principal component analysis revealed a shift of the gut microbiota structure in the LFD and HFD groups away from that of the BD group at week 6, while the gut microbiota structure of the LFD group was moved back to that of the BD group after reverting to NDs. Additionally, abnormal alterations of obesity-related phylotypes were observed in the LFD and HFD groups, whereas the abundance of these phylotypes in the LFD group was almost reverted to the BD levels over time. Collectively, dietary fat perturbations in early life have long-term impacts on hosts, and the structural resilience of the gut microbiota in hens fed with HFD was lower than that in their LFD counterparts.  相似文献   

9.
Old mice reared on regular diet show reduced motor activity, decreased basal adenylate cyclase, and increased MAO activities compared to adults. Brain DDC and COMT activities, DA, NE levels and DA-stimulated adenylate cyclase remained unchanged. By contrast, mice fed levodopa for life did not develop decreased motor activity with aging, lived about 50% longer, had slightly elevated whole brain DA and NE levels and failed to develop the expected rise in MAO activity with aging. Levodopa did not alter the number of dopaminergic and muscarinic cholinergic receptors or the adenylate cyclase activity in the striatum during aging. On levodopa, hepatic and renal DA, dopa, and HVA increased but the latter two returned to basal levels by mid life. In liver, DDC was unchanged but MAO tended to be higher in levodopa-fed mice. Thus, motor impairment is an age-related phenomenon in mice associated with selective alterations in brain dopaminergic systems, which may be prevented by dietary levodopa. Extracerebral tissues, through possibly adaptive metabolic mechanisms, play a significant role in regulating brain catecholamines during chronic administration of large doses of levodopa.  相似文献   

10.
Poly-N-acetyllactosamine extension has been found in O-glycans in addition to N-glycans and glycosphingolipids. Attempts were made in HL-60 and K562 cells to determine the amount of poly-N-acetyllactosaminyl O-glycans in the major sialoglycoprotein, leukosialin. Leukosialin was immunoprecipitated from [3H]glucosamine-labeled HL-60 and K562 cells. Glycopeptides were prepared by Pronase digestion, and O-glycan-containing glycopeptides were isolated by affinity chromatography using Jacalin-agarose. The glycopeptides bound to Jacalin-agarose and those unbound were treated with alkaline borohydride, and the released O-glycans were fractionated by Bio-Gel P-4 filtration. Sequential glycosidase digestion of the O-glycans, with or without pretreatment by fucosidase or neuraminidase, revealed the following conclusions. 1) Leukosialin from HL-60 cells contains about 1-2 poly-N-acetyllactosaminyl O-glycan chains/molecule. 2) About 50% of these poly-N-acetyllactosaminyl O-glycans contain sialyl Le(x) termini, NeuNAc alpha 2-->3Gal beta 1-->4 (Fuc alpha 1-->3)GlcNAc beta 1-->R. The amount of sialyl Le(x) structure in leukosialin is roughly equivalent to that on cell surfaces of HL-60 cells. 3) Leukosialin from K562 cells, on the other hand, contains no detectable amount of poly-N-acetyllactosaminyl O-glycans. 4) The presence of poly-N-acetyllactosamine in O-glycans is dependent on the core 2 beta 1,6-N-acetylglucosaminyl transferase. 5) Jacalin-agarose binds to sialylated small oligosaccharides such as NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->6) GalNAc but not the hexasaccharide NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->6) GalNAc. These results indicate that the formation of polylactosaminyl O-glycans and sialyl Le(x) structure in O-glycans is dependent on the core 2 formation.  相似文献   

11.
Disruption of the gut microbiota by high-fat diet (HFD) has been implicated in the development of obesity. It remains to be elucidated whether the HFD-induced shifts occur at the phylum level or whether they can be attributed to specific phylotypes; additionally, it is unclear to what extent the changes are reversible under normal chow (NC) feeding. One group (diet-induced obesity, DIO) of adult C57BL/6J mice was fed a HFD for 12 weeks until significant obesity and insulin resistance were observed, and then these mice were switched to NC feeding for 10 weeks. Upon switching to NC feeding, the metabolic deteriorations observed during HFD consumption were significantly alleviated. The second group (control, CHO) remained healthy under continuous NC feeding. UniFrac analysis of bar-coded pyrosequencing data showed continued structural segregation of DIO from CHO on HFD. At 4 weeks after switching back to NC, the gut microbiota in the DIO group had already moved back to the CHO space, and continued to progress along the same age trajectory and completely converged with CHO after 10 weeks. Redundancy analysis identified 77 key phylotypes responding to the dietary perturbations. HFD-induced shifts of these phylotypes all reverted to CHO levels over time. Some of these phylotypes exhibited robust age-related changes despite the dramatic abundance variations in response to dietary alternations. These findings suggest that HFD-induced structural changes of the gut microbiota can be attributed to reversible elevation or diminution of specific phylotypes, indicating the significant structural resilience of the gut microbiota of adult mice to dietary perturbations.  相似文献   

12.
人体肠道内定植了约1014个微生物,种类有1 000多种,它们作为"人体的第十三个生理系统",直接参与了机体的各种代谢活动,与人体健康密切相关。研究显示,肠道菌群的构成和稳定受到诸多宿主和环境因素的影响,其中饮食因素起着至关重要的作用。因此,本文用膳食金字塔将食物进行分类,介绍了膳食中谷类、果蔬类、豆类、奶类、鱼肉类、油脂类和糖类对肠道菌群的调节作用,以期为相关研究的开展、相应疾病的防治提供参考。  相似文献   

13.
This study was designed to examine the effects of a diet contaminated by environmental cadmium on organ/body weight ratio and selected toxicological indices. It was also designed to permit a comparative analysis of the effects of the diet contaminated by environmental cadmium and that of cadmium supplemented diet based on the same parameters. Our results show that even though the cadmium content of the environmental cadmium contaminated diet was 300% less than that of the cadmium supplemented diet, the former caused statistically significant changes in Superoxide dismutase (SOD) activity (P < 0.025), Na+/K+ ATPase activity (P < 0.005) and Malondialdehyde (MDA) level (P < 0.025) when values at the end of 1 month exposure were compared to the values at the end of 3 months exposure. These parameters were altered in the same manner by the cadmium content of the supplemented diet in addition to significant reduction in liver/body weight ratio(P < 0.005) within the exposure periods examined. By virtue of the very close nature of the values of these parameters in rats exposed to the two different diets, it appears that the background cadmium (cadmium from the environment) content of the diets is largely responsible for the observed changes, except in the case of liver/body weight ratio.Published online: March 2005  相似文献   

14.
人体肠道内含有大量的微生物,直接参与了机体的各种代谢活动,与人体健康密切相关。研究显示肠道菌群的构成和稳定受到诸多宿主和环境因素的影响,其中饮食因素起着至关重要的作用。特别是西方高脂饮食方式造成肠道菌群结构改变,从而导致一些慢性、非传染性和免疫相关性疾病的发生。在过去的几十年中,肠道菌群在人体健康中的作用越来越受到关注。不同饮食结构可以对肠道菌群的组成和多样性产生重要的影响。在这篇综述中,我们总结了肠道微生物与人体健康之间的关系以及益生菌在饮食中的作用,为指导和建立健康饮食结构提供理论指导,为相应疾病的防治提供参考。  相似文献   

15.
Alterations of the gut microbiota induced by diet exert a strong influence on the development of metabolic syndrome. In this study, we prove the hypothesis that the long-term high-fat diet (HFD) may influence gut microbiota directly and/or indirectly by changing the redox state. Lipoic acid (LA), as a universal antioxidant, was used to improve the redox state. Reactive oxygen species (ROS), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) were analyzed to profile oxidative stress states. PCR-denaturing gradient gel electrophoresis (DGGE) was used to describe gut flora structures, while plate count was employed for the quantitative analysis of Escherichia coli, lactobacilli, and enterococcus. The influence of redox state on the vitality of gut-derived bacteria was measured in vitro. ROS and MDA, which significantly decreased in LA mice compared with HFD mice, showed a strong positive association with E. coli and enterococcus (P?<?0.05) and a negative association with lactobacilli (P?<?0.05). Increased T-AOC in LA mice showed a high positive association with lactobacilli (P?<?0.05) and a negative correlation with E. coli and enterococcus. These correlations implied that the dietary effects on the gut microbiota were conferred, at least in part, through an effect on oxidative stress. This study provides evidence that modulation of the redox state by an antioxidant has the potential to improve gut microbiota, which has relevance for metabolic health.  相似文献   

16.
Maintenance of a reduced body weight is accompanied by a decrease in energy expenditure beyond that accounted for by reduced body mass and composition, as well as by an increased drive to eat. These effects appear to be due--in part--to reductions in circulating leptin concentrations due to loss of body fat. Gut microbiota have been implicated in the regulation of body weight. The effects of weight loss on qualitative aspects of gut microbiota have been studied in humans and mice, but these studies have been confounded by concurrent changes in diet composition, which influence microbial community composition. We studied the impact of 20% weight loss on the microbiota of diet-induced obese (DIO: 60% calories fat) mice on a high-fat diet (HFD). Weight-reduced DIO (DIO-WR) mice had the same body weight and composition as control (CON) ad-libitum (AL) fed mice being fed a control diet (10% calories fat), allowing a direct comparison of diet and weight-perturbation effects. Microbial community composition was assessed by pyrosequencing 16S rRNA genes derived from the ceca of sacrificed animals. There was a strong effect of diet composition on the diversity and composition of the microbiota. The relative abundance of specific members of the microbiota was correlated with circulating leptin concentrations and gene expression levels of inflammation markers in subcutaneous white adipose tissue in all mice. Together, these results suggest that both host adiposity and diet composition impact microbiota composition, possibly through leptin-mediated regulation of mucus production and/or inflammatory processes that alter the gut habitat.  相似文献   

17.
The future study of colon disease in captive callitrichid colonies may require manipulation of diets. The limited knowledge of the nutritional requirements for these species and the varied diets and supplementations fed to these animals in various colonies suggest the importance of testing the palatability and acceptability of diets for these primates. Individually housed cotton-top tamarins (Saguinus oedipus) were given either the regular Oak Ridge Associated Universities (ORAU) diet (monkey chow slurry, canned diet and supplements), a similar slurry using an experimental natural ingredient diet plus supplements, or the experimental diet without supplements. Neither dry food consumption, body weight, fecal output, nor the histological evaluation of the colons were affected by these diets. Daily intake of protein and calories were higher than previously reported estimates for the species. These results demonstrate that a natural ingredient non-sweetened pelleted diet is palatable for cotton-top tamarins for a period of 3.5 months, however, further testing over longer time periods is necessary. The nonnutritional (e.g. psychological) advantages of providing a highly diverse diet to primates housed in a relatively monotonous environment should be considered before adopting such a diet for an entire colony.  相似文献   

18.
19.
Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.  相似文献   

20.
This study was carried out to evaluate the anti-obesity effect of Vernonia amygdalina Del. (VA) supplemented diet. VA leaf powder was fed at 5% and 15% to diet-induced obese rats for 4 weeks and its effect compared with orlistat (5.14 mg/kg p.o.), an anti-obesity drug. Food intake, body and organ weights, total body fat, some lipid components and amino transaminase activities in serum, hepatocytes and brain; as well as serum glucose, were measured during or at end of the study. Result showed respective decrease of 12.78% and 38.51% in body weight gain, of VA fed rats against 17.45% of orlistat at end of study (P < 0.05); but with no effect on food intake. Total body fat was lowered by 28.04% and 30.02% vs. obese control rats (CDC) (P < 0.05). Furthermore, serum triacylglycerol (TG), serum and brain total cholesterol (TCHOL), were down regulated at 15% VA supplementation (P < 0.05). Serum glucose which increased in obese rats by 46.26% (P < 0.05) vs. NC, indicating intolerance, was restored by VA (38.75% and 34.65%) and orlistat (31.80%) vs. CDC (P < 0.05). VA diet also exerted hepato-protection, via lowering serum alanine amino transaminase (ALT) (41.35% and 27.13%) and aspartate amino transaminase (AST) (17.09% and 43.21%) activities (P < 0.05). Orlistat had no effect on these enzymes. Histology of adipose tissue corroborated the changes on total body fat. We concluded that, diet supplemented with VA can attenuate dietary obesity as well as ameliorates the potential risks of hepato-toxicity and glucose intolerance associated with obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号