首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Many insects rely on cuticular hydrocarbons (CHCs) as major recognition signals between individuals. Previous research on the genetics of CHCs has focused on Drosophila in which the roles of three desaturases and one elongase were highlighted. Comparable studies in other insect taxa have not been conducted so far. Here, we explore the genetics of CHCs in hybrids of the jewel wasps Nasonia giraulti and Nasonia vitripennis. We analyzed the CHC profiles of pure strain and of F(2) hybrid males using gas chromatography coupled with mass spectrometry and distinguished 54 peaks, of which we identified 52 as straight-chain, monounsaturated, or methyl-branched CHCs. The latter compound class proved to be particularly abundant and diverse in Nasonia. Quantitative trait locus (QTL) analysis suggests fixed genetic differences between the two strains in 42 of the 54 studied traits, making Nasonia a promising genetic model for identifying genes involved in CHC biosynthesis. QTL for methyl-branched CHCs partly clustered in genomic regions with high recombination rate: a possible indication for pleiotropic genes that control their biosynthesis, which is largely unexplored so far. Finally, we identified and mapped genes in the Nasonia genome with high similarity to genes that have been implicated in alkene biosynthesis in Drosophila and discuss those that match in their position with predicted QTL for alkenes.  相似文献   

2.
Survival to low relative humidity is a complex adaptation, and many repeated instances of evolution to desiccation have been observed among Drosophila populations and species. One general mechanism for desiccation resistance is Cuticular Hydrocarbon (CHC) melting point. We performed the first Quantitative Trait Locus (QTL) map of population level genetic variation in desiccation resistance in D. melanogaster. Using a panel of Recombinant Inbred Lines (RILs) derived from a single natural population, we mapped QTL in both sexes throughout the genome. We found that in both sexes, CHCs correlated strongly with desiccation resistance. At most desiccation resistance loci there was a significant association between CHCs and desiccation resistance of the sort predicted from clinal patterns of CHC variation and biochemical properties of lipids. This association was much stronger in females than males, perhaps because of greater overall abundance of CHCs in females, or due to correlations between CHCs used for waterproofing and sexual signalling in males. CHC evolution may be a common mechanism for desiccation resistance in D. melanogaster. It will be interesting to compare patterns of CHC variation and desiccation resistance in species which adapt to desiccation, and rainforest restricted species which cannot.  相似文献   

3.
昆虫表皮碳氢化合物(cuticular hydrocarbons)是正烷烃、不饱和烃以及甲基支链烃的混合物.除了保持水分的基本功能外,还具有多种生物功能.鞘翅目昆虫(俗称甲虫)是多样性最为丰富的昆虫类群,目前对其表皮碳氢化合物研究开展颇多,主要见于化学通讯领域,内容涉及到性信息素、标记信息素、聚集信息素、化学拟态、寄主...  相似文献   

4.
Evolutionary changes in traits that affect both ecological divergence and mating signals could lead to reproductive isolation and the formation of new species. Insect cuticular hydrocarbons (CHCs) are potential examples of such dual traits. They form a waxy layer on the cuticle of the insect to maintain water balance and prevent desiccation, while also acting as signaling molecules in mate recognition and chemical communication. Because the synthesis of these hydrocarbons in insect oenocytes occurs through a common biochemical pathway, natural or sexual selection on one role may affect the other. In this review, we explore how ecological divergence in insect CHCs can lead to divergence in mating signals and reproductive isolation. We suggest that the evolution of insect CHCs may be ripe models for understanding ecological speciation.  相似文献   

5.
The insect cuticle is the interface between internal homeostasis and the often harsh external environment. Cuticular hydrocarbons (CHCs) are key constituents of this hard cuticle and are associated with a variety of functions including stress response and communication. CHC production and deposition on the insect cuticle vary among natural populations and are affected by developmental temperature; however, little is known about CHC plasticity in response to the environment experienced following eclosion, during which time the insect cuticle undergoes several crucial changes. We targeted this crucial to important phase and studied post‐eclosion temperature effects on CHC profiles in two natural populations of Drosophila melanogaster. A forty‐eight hour post‐eclosion exposure to three different temperatures (18, 25, and 30°C) significantly affected CHCs in both ancestral African and more recently derived North American populations of D. melanogaster. A clear shift from shorter to longer CHCs chain length was observed with increasing temperature, and the effects of post‐eclosion temperature varied across populations and between sexes. The quantitative differences in CHCs were associated with variation in desiccation tolerance among populations. Surprisingly, we did not detect any significant differences in water loss rate between African and North American populations. Overall, our results demonstrate strong genetic and plasticity effects in CHC profiles in response to environmental temperatures experienced at the adult stage as well as associations with desiccation tolerance, which is crucial in understanding holometabolan responses to stress.  相似文献   

6.
Female choice based on male secondary sexual traits is well documented, although the extent to which this selection can drive an evolutionary divergence in male traits among populations is less clear. Male field crickets Teleogryllus oceanicus attract females using a calling song and once contacted switch to courtship song to persuade them to mate. These crickets also secrete onto their cuticle a cocktail of long‐chained fatty acids or cuticular hydrocarbons (CHCs). Females choose among potential mates based on the structure of male acoustic signals and on the composition of male CHC profiles. Here, we utilize two naturally occurring mutations that have arisen independently on two Hawaiian islands and render the male silent to ask whether the evolutionary loss of acoustic signalling can drive an evolutionary divergence in the alternative signalling modality, male CHC profiles. QSTFST comparisons revealed strong patterns of CHC divergence among three populations of crickets on the islands of Hawaii, Oahu and Kauai. Contrasts between wild‐type and flatwing males on the islands of Oahu and Kauai indicated that variation in male CHC profiles within populations is associated with the loss of acoustic signalling; flatwing males had a relatively low abundance of long‐chained CHCs relative to the short‐chained CHCs that females find attractive. Given their dual functions in desiccation resistance and sexual signalling, insect CHCs may be particularly important traits for reproductive isolation and ultimately speciation.  相似文献   

7.
We took a comparative approach utilizing clines to investigate the extent to which natural selection may have shaped population divergence in cuticular hydrocarbons (CHCs) that are also under sexual selection in Drosophila. We detected the presence of CHC clines along a latitudinal gradient on the east coast of Australia in two fly species with independent phylogenetic and population histories, suggesting adaptation to shared abiotic factors. For both species, significant associations were detected between clinal variation in CHCs and temperature variation along the gradient, suggesting temperature maxima as a candidate abiotic factor shaping CHC variation among populations. However, rainfall and humidity correlated with CHC variation to differing extents in the two species, suggesting that response to these abiotic factors may vary in a species‐specific manner. Our results suggest that natural selection, in addition to sexual selection, plays a significant role in structuring among‐population variation in sexually selected traits in Drosophila.  相似文献   

8.
Insect cuticular hydrocarbons (CHCs) serve as communication signals and protect against desiccation. They form complex blends of up to 150 different compounds. Due to differences in molecular packing, CHC classes differ in melting point. Communication is especially important in social insects like ants, which use CHCs to communicate within the colony and to recognize nestmates. Nestmate recognition models often assume a homogenous colony odor, where CHCs are collected, mixed, and redistributed in the postpharyngeal gland (PPG). Via diffusion, recognition cues should evenly spread over the body surface. Hence, CHC composition should be similar across body parts and in the PPG. To test this, we compared CHC composition among whole-body extracts, PPG, legs, thorax, and gaster, across 17 ant species from 3 genera. Quantitative CHC composition differed between body parts, with consistent patterns across species and CHC classes. Early-melting CHC classes were most abundant in the PPG. In contrast, whole body, gaster, thorax, and legs had increasing proportions of CHC classes with higher melting points. Intraindividual CHC variation was highest for rather solid, late-melting CHC classes, suggesting that CHCs differ in their diffusion rates across the body surface. Our results show that body parts strongly differ in CHC composition, either being rich in rather solid, late-melting, or rather liquid, early-melting CHCs. This implies that recognition cues are not homogenously present across the insect body. However, the unequal diffusion of different CHCs represents a biophysical mechanism that enables caste differences despite continuous CHC exchange among colony members.  相似文献   

9.
10.
Cuticular hydrocarbons (CHCs) are long-chain fatty acids and their derivatives that protect insects from desiccation. They can also be important semiochemicals in insect reproduction. We used behavioural and chemical assays to examine the potential role of CHCs in sexual communication in a solitary burrowing bee, Amegilla dawsoni. Washing CHC blends from the cuticle of emerging virgin females made them unattractive to mate-searching males. Returning the CHC blends restored their attractiveness. Nesting females were unattractive to mate-searching males, whether they were washed or not. Chemical analysis identified significant differences between male and female CHC blends and between virgin female and nesting female blends. Some of these differences were due to specific compounds. Loss of attractiveness is unlikely to be due to antiaphrodisiac compounds delivered by males, because male-specific compounds were not found on nesting females, and because recently mated females with intact CHC blends were attractive to searching males. Nesting females could not be made attractive to searching males by removing their CHC blends. Adding virgin female CHC blends tended to improve attractiveness but the effect was weak, suggesting that some form of volatile compound may also be involved in signalling unreceptivity.  相似文献   

11.
Many insects can live on water and survive being caught in the rain. Current research has shown that insect cuticular hydrocarbons(CHC) confer desiccation resistance to maintain water balance. In this study, we identified a fatty acyl-CoA reductase gene(NlFAR) of the rice brown planthopper, Nilaparvata lugens that is essential for the production of CHCs, and found that NlFAR is essential for N. lugens to walk and jump on water when moving from one rice plant to another in paddy fields. NlFAR was mainly expressed in the integument at the beginning of each molt. Cuticular surface analysis by scanning electron microscopy and characterization of CHC extracts indicated that N. lugens with knockdown of NlFAR using RNA inference(RNAi)had a neater epicuticle layer and a significant decrease in CHC contents. Knockdown of NlFAR did not influence the desiccation resistance of N. lugens, but the ds NlFAR-treated insects were easily adhered and moistened by water droplets or their own secreted honeydew and unable to walk or jump on water. These results suggested that NlFAR is a crucial enzyme for CHC biosynthesis and cuticle waterproofing, but not for water retention of N. lugens, which may provide a potential strategy for pest management.  相似文献   

12.
Female mate choice is one mechanism of sexual selection and, provided there is adequate genetic variation in the male traits that are the target of this selection, they will evolve via female choice. Cuticular hydrocarbons (CHCs) are important in Drosophila mate choice, but relatively little is known about the underlying genetic architecture of CHC profiles in Drosophila simulans. Here, we used gas chromatography-mass spectrometry to investigate patterns of genetic variation in the CHC profiles of male and female D. simulans using isofemale lines. We found substantial genetic variation for CHC profiles and individual CHC components, and individual CHCs were frequently strongly genetically correlated, with a tendency for negative covariance between long- and short-chain CHCs in males. Intersexual genetic covariances were often weak and frequently differed in sign. These findings are novel and significant, highlighting the previously unexplored genetic architecture of CHCs in D. simulans and suggest that this architecture may facilitate sex-specific CHC evolution.  相似文献   

13.
Melanism seems to have evolved independently through diverse mechanisms in various taxa and different ecological factors could be responsible for selective responses. Increased body melanization at higher altitudes as well as latitudes is generally considered to be adaptive for thermoregulation. Physiological traits such as body melanization and desiccation resistance have been investigated independently in diverse insect taxa at three levels: within populations, between populations and among species. A substantial number of Drosophila studies have reported clinal variations in both these traits along latitude. A possible link between these traits had remained unexplored in wild and laboratory populations of ectothermic insect taxa, including drosophilids, to date. Simultaneous analysis of these traits in assorted darker and lighter phenotypes in each population in the present study showed parallel changes for body melanization and desiccation resistance. The mechanistic basis of evolving desiccation resistance was explained on the basis of differential rates of water loss per hour in darker versus lighter phenotypes in six populations of Drosophila melanogaster from adjacent localities differing substantially in altitude all along the Indian subcontinent. Data on cuticular impermeability suggest a possible role of melanization in desiccation tolerance. However, substantial gaps remain in extending these results to other insect taxa and further exploring the physiological and molecular changes involved in melanization for conferring desiccation resistance.  相似文献   

14.
Cuticular hydrocarbons (CHCs) are expressed on an insect's cuticle and are one of the major factors allowing insects to identify members of their own species, colony and gender. As a result of their species‐specificity, CHCs are increasingly used to delimit species in addition to more conventional methods, such as morphology or genetic markers, and so play an important role in chemotaxonomy. Species vary in the type of CHCs that they produce, as well as in the relative quantities of shared compounds. This review summarizes not only how taxonomists may differentiate between species based on CHC profiles, but also the incentive for using CHC composition as taxonomic tool. Benefits regarding the identification of cryptic species and early signs of reproductive isolation are then discussed, giving examples from studies of taxonomy, behaviour and biosynthesis. For taxonomic characters to reliably indicate species boundaries, their limitations need to be known. Potential problems caused by environmental effects, intra‐species variation in profiles and other technical issues are highlighted, and suggestions are made regarding their avoidance. It remains a challenge to determine the variation beyond which two species can be called independent; a problem shared by most methods of delimitation. Recently, there has been a shift towards using a combination of different taxonomic tools, both molecular and non‐molecular, to test observed species differences.  相似文献   

15.
Phenotypic traits that convey information about individual identity or quality are important in animal social interactions, and the degree to which such traits are influenced by environmental variation can have profound effects on the reliability of these cues. Using inbred genetic lines of the decorated cricket, Gryllodes sigillatus, we manipulated diet quality to test how the cuticular hydrocarbon (CHC) profiles of males and females respond across two different nutritional rearing environments. There were significant differences between lines in the CHC profiles of females, but the effect of diet was not quite statistically significant. There was no significant genotype-by-environment interaction (GEI), suggesting that environmental effects on phenotypic variation in female CHCs are independent of genotype. There was, however, a significant effect of GEI for males, with changes in both signal quantity and content, suggesting that environmental effects on phenotypic expression of male CHCs are dependent on genotype. The differential response of male and female CHC expression to variation in the nutritional environment suggests that these chemical cues may be under sex-specific selection for signal reliability. Female CHCs show the characteristics of reliable cues of identity: high genetic variability, low condition dependence and a high degree of genetic determination. This supports earlier work showing that female CHCs are used in self-recognition to identify previous mates and facilitate polyandry. In contrast, male CHCs show the characteristics of reliable cues of quality: condition dependence and a relatively higher degree of environmental determination. This suggests that male CHCs are likely to function as cues of underlying quality during mate choice and/or male dominance interactions.  相似文献   

16.
Convergence of chemical mimicry in a guild of aphid predators   总被引:1,自引:0,他引:1  
Abstract.  1. A variety of insects prey on honeydew-producing Homoptera and many do so even in the presence of ants that tend, and endeavour to protect, these trophobionts from natural enemies. Few studies have explored the semiochemical mechanisms by which these predators circumvent attack by otherwise aggressive ants.
2. Ants use specific mixtures of cuticular hydrocarbons (CHCs) as recognition labels, but this simple mechanism is frequently circumvented by nest parasites that engage in 'chemical mimicry' of their host ants by producing or acquiring a critical suite of these CHCs.
3. Analysis of the CHCs from the North American woolly alder aphid, Prociphilus tessellatus (Homoptera: Aphididae), their tending ants, and aphid predators from three insect orders, Feniseca tarquinius (Lepidoptera: Lycaenidae), Chrysopa slossonae (Neuroptera: Chrysopidae), and Syrphus ribesii (Diptera: Syrphidae), showed that while the CHC profile of each predatory species was distinct, each was chemically more similar to the aphids than to either tending ant species. Further, the CHCs of each predator species were a subset of the compounds found in the aphids' profile.
4. These results implicate CHCs as a recognition cue used by ants to discriminate trophobionts from potential prey and a probable mechanism by which trophobiont predators circumvent detection by aphids and their tending ants.
5. Although several features of the aphids' CHC profile are shared among the chemically mimetic taxa, variation in the precision of mimicry among the members of this predatory guild demonstrates that a chemical mimic need not replicate every feature of its model.  相似文献   

17.
Environmental seasonality is a potent evolutionary force, capable of maintaining polymorphism, promoting phenotypic plasticity and causing bet-hedging. In Drosophila, environmental seasonality has been reported to affect life-history traits, tolerance to abiotic stressors and immunity. Oscillations in frequencies of alleles underlying fitness-related traits were also documented alongside SNPs across the genome. Here, we test for seasonal changes in two recombination characteristics, crossover rate and crossover interference, in a natural D. melanogaster population from India using morphological markers of the three major chromosomes. We show that winter flies, collected after the dry season, have significantly higher desiccation tolerance than their autumn counterparts. This difference proved to hold also for hybrids with three independent marker stocks, suggesting its genetic rather than plastic nature. Significant between-season changes are documented for crossover rate (in 9 of 13 studied intervals) and crossover interference (in four of eight studied pairs of intervals); both single and double crossovers were usually more frequent in the winter cohort. The winter flies also display weaker plasticity of both recombination characteristics to desiccation. We ascribe the observed differences to indirect selection on recombination caused by directional selection on desiccation tolerance. Our findings suggest that changes in recombination characteristics can arise even after a short period of seasonal adaptation (~8–10 generations).Subject terms: Structural variation, Evolutionary biology, Evolutionary genetics  相似文献   

18.
Cuticular hydrocarbons (CHCs) form the boundary between insects and their environments and often act as essential cues for species, mate, and kin recognition. This complex polygenic trait can be highly variable both among and within species, but the causes of this variation, especially the genetic basis, are largely unknown. In this study, we investigated phenotypic and genetic variation of CHCs in the seaweed fly, Coelopa frigida, and found that composition was affected by both genetic (sex and population) and environmental (larval diet) factors. We subsequently conducted behavioral trials that show CHCs are likely used as a sexual signal. We identified general shifts in CHC chemistry as well as individual compounds and found that the methylated compounds, mean chain length, proportion of alkenes, and normalized total CHCs differed between sexes and populations. We combined these data with whole genome resequencing data to examine the genetic underpinnings of these differences. We identified 11 genes related to CHC synthesis and found population‐level outlier SNPs in 5 that are concordant with phenotypic differences. Together these results reveal that the CHC composition of C. frigida is dynamic, strongly affected by the larval environment, and likely under natural and sexual selection.  相似文献   

19.
Foley B  Chenoweth SF  Nuzhdin SV  Blows MW 《Genetics》2007,175(3):1465-1477
Cuticular hydrocarbons (CHCs) act as contact pheromones in Drosophila melanogaster and are an important component of several ecological traits. Segregating genetic variation in the expression of CHCs at the population level in D. melanogaster is likely to be important for mate choice and climatic adaptation; however, this variation has never been characterized. Using a panel of recombinant inbred lines (RILs) derived from a natural population, we found significant between-line variation for nearly all CHCs in both sexes. We identified 25 QTL in females and 15 QTL in males that pleiotropically influence CHC expression. There was no evidence of colocalization of QTL for homologous traits across the sexes, indicating that sexual dimorphism and low intersex genetic correlations between homologous CHCs are a consequence of largely independent genetic control. This is consistent with a pattern of divergent sexual and natural selection between the sexes.  相似文献   

20.
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号