首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synaptic plasma membranes (SPM) from the brain are known to have specific binding sites for several steroid hormones, but the mechanisms of membrane transduction of steroid signals is not understood. In this study, corticosterone was found to prevent temperature-dependent dissociation of endogenous calmodlin (CaM) from highly purified SPM from rat cerebral cortex. The steroid stabilizes Ca2+-dependent membrane binding of endogenous CaM (78% of total CaM), whereas Ca2+-independent binding of CaM (the other 22%) is not affected. The stabilization of membrane binding of endogenous CaM by corticosterone is concentration-dependent, with the maximal effect occurring at steroid concentration of 1 M. The EC50 is estimated as 130 nM, which is almost identical to the Kd of specific binding of the steroid to SPM (120 nM) reported previously. The effect in stabilizing membrane binding of CaM is specific to corticosterone and other glucocorticoids (cortisol, dexamethasone and triamcinolone); gonadal steroids (17-estradiol, progesterone and testosterone) are ineffective. Furthermore, corticosterone administration in vivo (2 mg/kg, i.p.) produced a rapid increase of CaM content in SPM, occurring within 5 min after steroid injection and persisting for at least 20 min. Since CaM mediates a variety of biochemical processes in synaptic membranes, we hypothesize that the effect of glucocorticoids in promoting membrane binding of CaM may lead to a cascade of consequences in synaptic membrane function.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

2.
The effect of morphine on ATPase of synaptic plasma membranes (SPM) and synaptic vesicles isolated from the mouse brain was studied. The activity of synaptic vesicle Mg++-dependent ATPase from mice rendered morphine tolerant and dependent by pellet implantation was 40% higher than that from placebo implanted mice. However, the activities of Mg++-dependent ATPase and Na+, K+ activated ATPase of SPM of tolerant and nontolerant mice were not significantly different. The activity of synaptic vesicular Mg++-dependet ATPase was dependent on the concentration of Mg++ but not of Ca++; maximum activity was obtained with 2 mM MgCl2. On the other hand, Mg++-dependent ATPase activity of SPM was dependent on both Mg++ and Ca++, activity being maximum using 2 mM MgCl2 and 10?5 M CaCl2. It is suggested that this stimulation of ATPase activity may alter synaptic transmission and may thus be involved in some aspects of morphine tolerance and dependence.  相似文献   

3.
The effects of ethanol in vitro on calmodulin-dependent Ca2+-activated ATPase (CaM–Ca2+-ATPase) activity were studied in synaptic plasma membranes (SPM) prepared from the brain of normal and chronically ethanol-treated rats. In SPM from normal animals, ethanol at 50–200 mM inhibited the Ca2+-ATPase activity. Lineweaver-Burk analysis indicates that the inhibition was the result of a decreased affinity of the enzyme for calmodulin, whereas the maximum activity of the enzyme was not changed. Arrhenius analysis indicates that the enzyme activity was influenced by lipid transition of the membranes, and ethanol in vitro resulted in a shift of the transition temperature toward a lower value. From animals receiving chronic ethanol treatment (3 weeks), the SPM were resistant to the inhibitory effect of ethanol on the enzyme activity. The resistance to ethanol inhibition was correlated with a higher enzyme affinity for calmodulin and a higher transition temperature, as compared with normal SPM. Since the calmodulin-dependent Ca2+-ATPase in synaptic plasma membranes is believed to be the Ca2+ pump controlling free Ca2+ levels in synaptic terminals, its inhibition by ethanol could therefore lead to altered synaptic activity.Abbreviations used ATPase adenosine triphosphatase - CaM calmodulin - CaM–Ca2+-ATPase calmodulin-dependent Ca2+-activated ATPase - EGTA ethylene-bis(oxyethylenenitrilo)tetraacetic acid - EtOH ethanol - Hepes N—2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - SPM synaptic plasma membranes - TFP trifluoperazine - Tris tris(hydroxymethyl)aminomethane - Km Michaelis constant - Td transition temperature - Vmax maximum velocity  相似文献   

4.
We investigated Ca2+ handling in isolated brain synaptic and non‐synaptic mitochondria and in cultured striatal neurons from the YAC128 mouse model of Huntington's disease. Both synaptic and non‐synaptic mitochondria from 2‐ and 12‐month‐old YAC128 mice had larger Ca2+ uptake capacity than mitochondria from YAC18 and wild‐type FVB/NJ mice. Synaptic mitochondria from 12‐month‐old YAC128 mice had further augmented Ca2+ capacity compared with mitochondria from 2‐month‐old YAC128 mice and age‐matched YAC18 and FVB/NJ mice. This increase in Ca2+ uptake capacity correlated with an increase in the amount of mutant huntingtin protein (mHtt) associated with mitochondria from 12‐month‐old YAC128 mice. We speculate that this may happen because of mHtt‐mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca2+‐induced damage. In experiments with striatal neurons from YAC128 and FVB/NJ mice, brief exposure to 25 or 100 μM glutamate produced transient elevations in cytosolic Ca2+ followed by recovery to near resting levels. Following recovery of cytosolic Ca2+, mitochondrial depolarization with FCCP produced comparable elevations in cytosolic Ca2+, suggesting similar Ca2+ release and, consequently, Ca2+ loads in neuronal mitochondria from YAC128 and FVB/NJ mice. Together, our data argue against a detrimental effect of mHtt on Ca2+ handling in brain mitochondria of YAC128 mice.

  相似文献   


5.
The effects of ethanol on physicochemical and enzymatic perturbations of neuronal membranes were examined. Using synaptic plasma membrane (SPM) isolated from cerebral cortex of Sprague-Dawley rats, a biphasic mode of action for ethanol was observed with (Na++K+)-ATPase, but not with Ca2+-ATPase or acetylcholinesterase. (Na++K+)-ATPase was found to be more sensitive to low concentration of sodium deoxycholate treatment than Ca2+-ATPase. A sharp transition break of (Na++K+)-ATPase activity in response to temperature changes was found with SPM preparation. Arrhenius plots of the response also indicated that (Na++K+)-ATPase is more sensitive to temperature changes than Ca2+-ATPase. The fluorescence polarization of TNS-membrane complex decreases as ethanol concentration increases, indicating an increase in membrane fluidity. However, ethanol, at low concentration (<0.3%) appears to elevate TNS fluorescence, but a hhigher concentration (3%) ethanol tends to lower the intensity of maximal emission. The results of this study indicate that ethanol may interact with the synaptic plasma membranes and elicit specific biochemical responses depending on the concentration of the alcohol used.  相似文献   

6.
The protein-sensitized fluorescence of Tb3+ was used as a probe for cation binding sites on synaptic vesicles. Competition studies show that the order of affinity for the sites is Cu2+ > Mn2+ > Ca2+ > Mg2+ and Zn2+ is inactive. Fluorescence quenching studies indicate that the site is superficial and the effect of pH suggests that histidine is involved in the binding. Measurements of enzyme activities in the presence of lanthanides reveal that the metal binding site identified by Tb3+ fluorescence is not the Cu2+ site associated with dopamine-β-hydroxylase. Terbium inhibits Ca2+-stimulated ATPase but not Mg2+-stimulated ATPase activities of the synaptic vesicle fraction. A kinetic analysis indicates that the site monitored by Tb3+ fluorescence may be a component of the Ca2+-stimulated ATPase. It is also suggested that Mg2+ and especially Cu2+ may bind to the sites in vivo, serving as a bridge between vesicles and other synaptic components such as the presynaptic plasma membrane.  相似文献   

7.
We have studied the correlation between [3H]ouabain binding sites, (Na++K+)ATPase (EC 3.6.1.3) activity and acetylcholine (ACh) release in different subcellular fractions ofTorpedo marmorata electric organ (homogenate, synaptosomes, presynaptic plasma membranes). Presynaptic plasma membranes contained the greater number of [3H]ouabain binding sites in good agreement with the high (Na++K+)ATPase activity found in this fraction. Blockade of this enzymatic activity by ouabain dose-dependently induced ACh release from pure cholinergic synaptosomes, either in the presence or absence of extracellular calcium ions. We suggest that one of the mechanisms involved in the ouabain-induced ACh release in the absence of Ca2+ o may be an increase in Na+ i that could (a) evoke Ca2+ release from internal stores and (b) inhibit ATP-dependent Ca2+ uptake by synaptic vesicles.  相似文献   

8.
The effects of lead on Ca2+ homeostasis in nerve terminals was studied. Incubation with leadin vitro stimulated the activity of calmodulin and the maximum effect was observed at 30 M lead, higher concentrations had an inhibitory effect.In vivo exposure to lead increased the activity of calmodulin by 45%. Lead had an inhibitory effect on Ca2+ ATPase activity in both calmodulin-rich and calmodulin-depleted synaptic plasma membranes, the IC50 values for inhibition being 13.34 and 16.69 M respectively. Exogenous addition of calmodulin (5 g) and glutathione (1 mM) to calmodulin rich synaptic plasma membranes reversed the inhibition by IC50 concentration of lead.In vivo exposure of lead also significantly reduced the Ca2+ ATPase activity, resulting in an increase in intrasynaptosomal calcium. Concomitant with the increase in intrasynaptosomal calcium, lipid peroxidation values also increased significantly in lead-treated animals. In addition lead also had an inhibitory effect on depolarization induced Ca2+ uptake and the inhibition was found to be a competitive one. The results sugest that lead exerts its toxic effects by modifications of the intracellular calcium messenger system which would have serious consequences on neuronal functioning.  相似文献   

9.
Calcium may be involved in plant tolerance to water deficit by regulating antioxidant metabolism or/and water relations. This study was designed to examine whether external Ca2+ would stimulate drought tolerance in cultured liquorice cells. Water stress induced by 15% PEG significantly reduced fresh weight and relative water content in liquorice cells, but external Ca2+ markedly increased them after stress for 7 days. The activities of catalase (CAT), superoxide dismutase (SOD) declined and activity of peroxidase (POD) slowly increased during water stress imposition. External calcium significantly enhanced SOD and CAT activities, but the effect on POD activity was weak. The effect of external Ca2+ on water deficit tolerance in liquorice cells was not due to the osmotic adjustment in culture medium. Under nonstress conditions, external calcium slightly increased the activities of SOD, CAT, and POD. Ca2+ signal in liquorice cells may be different under stress and nonstress conditions. Under water stress, Ca2+ signal involves in reactive oxygen species transduction pathway and affects the processes participating in regulation of antioxidative enzymes; under nonstress conditions, Ca2+ signal coming from external calcium might not participate in ROS signal transduction pathway resulting in antioxidative defense response in liquorice cells. Less malondialdehyde was accumulated after water stress for 7 days in Ca2+-treated cells than in untreated cells. It was proposed that external calcium could reduce the damage of water deficit and stimulate tolerance to it in liquorice cells by mitigating oxidative stress.  相似文献   

10.
Little is known about how hypercholesterolaemia affects Ca2+ signalling in the vasculature of ApoE−/− mice, a model of atherosclerosis. Our objectives were therefore to determine (i) if hypercholesterolaemia alters Ca2+ signalling in aortic endothelial cells before overt atherosclerotic lesions occur, (ii) how Ca2+ signals are affected in older plaque-containing mice, and (iii) whether Ca2+ signalling changes were translated into contractility differences. Using confocal microscopy we found agonist-specific Ca2+ changes in endothelial cells. ATP responses were unchanged in ApoE−/− cells and methyl-β-cyclodextrin, which lowers cholesterol, was without effect. In contrast, Ca2+ signals to carbachol were significantly increased in ApoE−/− cells, an effect methyl-β-cyclodextrin reversed. Ca2+ signals were more oscillatory and store-operated Ca2+ entry decreased as mice aged and plaques formed. Despite clearly increased Ca2+ signals, aortic rings pre-contracted with phenylephrine had impaired relaxation to carbachol. This functional deficit increased with age, was not related to ROS generation, and could be partially rescued by methyl-β-cyclodextrin. In conclusion, carbachol-induced calcium signalling and handling are significantly altered in endothelial cells of ApoE−/− mice before plaque development. We speculate that reduction in store-operated Ca2+ entry may result in less efficient activation of eNOS and thus explain the reduced relaxatory response to CCh, despite the enhanced Ca2+ response.  相似文献   

11.
Electron crystallographic studies on membrane crystals of Ca2+-ATPase reveal different patterns of ATPase-ATPase interactions depending on enzyme conformation. Physiologically relevant changes in Ca2+ concentration and membrane potential affect these interactions. Ca2+ induced difference FTIR spectra of Ca2+-ATPase triggered by photolysis of caged Ca2+ are consistent with changes in secondary structure and carboxylate groups upon Ca2+ binding; the changes are reversed during ATP hydrolysis suggesting that a phosphorylated enzyme form of low Ca2+ affinity is the dominant intermediate during Ca2+ transport. A two-channel model of Ca2+ translocation is proposed involving the membrane-spanning helices M2–M5 and M4, M5, M6 and M8 respectively, with separate but interacting Ca2+ binding sites.  相似文献   

12.
Biochemical and kinetic properties under identical substrate and reaction conditions were obtained for an ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase in synaptosome membrane vesicles prepared from the brain of the moth, Mamestra configurata. Both the ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase had single, high-affinity binding sites for ATP (Km = 14 and 116 μM, respectively), Ca2+free (Km = 0.13 nM and 0.072 nM, respectively), and Mg2+ (Km = 1.1 mM and 0.07 mM, respectively). Both systems were relatively little affected by K+ and were insensitive to ouabain, an inhibitor of (Na+ + K+)-ATPase. The results indicate that the ATP-dependent Ca2+ pump and (Ca2+ + Mg2+)-ATPase are functionally coupled in synaptic membranes and constitute a mechanism for Ca2+ transport in the brain of M. configurata. Although moth brain (Ca2+ + Mg2+)-ATPase is maximally active at nanomolar concentrations of free calcium ion, the enzyme retains at least one-half of its maximal activity at micromolar calcium concentrations, indicating either that the enzyme has two binding sites for calcium (a high-affinity site at nanomolar Ca2+free and a low-affinity site at micromolar Ca2+free), or that there are two enzymes with high and low affinity for calcium, respectively. Calcium extrusion from brain neurones of M. configurata may operate in a two-stage, concentration-dependent process in which a first stage, low-affinity pump reduces intraneuronal calcium to a concentration at which a second stage, high-affinity pump becomes activated.  相似文献   

13.
The structural properties of myristoylated forms of recombinant recoverin of the wild type and of its mutants with damaged second and/or third Ca2+-binding sites were studied by fluorimetry and circular dichroism. The interaction of wild-type recoverin with calcium ions was shown to induce unusual structural rearrangements in its molecule. In particular, protein binding with Ca2+ ions results in an increase in the mobility of the environment of Trp residues, in hydrophobicity, and in thermal stability (its thermal transition shifts by 15°C to higher temperatures) but has almost no effect on its secondary structure. Similar structural changes induced by Ca2+ are also characteristic of the -EF2 mutant of recoverin whose second Ca2+-binding site is modified and cannot bind calcium ions. The structural properties of the -EF3 and -EF2,3 mutants (whose third or simultaneously second and third Ca2+-binding sites, respectively, are modified and damaged) are practically indifferent to the presence of calcium ions. For the communication I, see [1].  相似文献   

14.
Calcium (Ca2+) increased insulin-receptor binding in both membrane and solubilised receptor preparations. Ca2+ increased both receptor affinity and initial rate of association of [125I]insulin to the receptor preparations. Ca2+ had no effect on insulin receptor number in either receptor preparation. The effect of Ca2+ on affinity could be mimicked by ions with similar ionic radii and properties (e.g., Ba2+, Mg2+ and Sr2+). EDTA and oleic acid reduced insulin binding and receptor affinity and these effects were reversed by the addition of Ca2+. These studies suggest that Ca2+ and Ca2+-like ions may bind to a site on or near the receptor and may be responsible for a conformational change with a consequent increase in receptor affinity.  相似文献   

15.
The time-course of alteration in islet cell phospholipid content following d-glucose exposure in islet cells and in islet cell membranes was related to the ability of lipids extracted from both cultured pancreatic islet cells and from plasma membranes isolated from the islet cells to translocate calcium in two model membrane systems. The first model system (bulk-phase system) detected lipid species with the ability to bind calcium, irrespective of their ability to enhance calcium transport across cell membranes. The second system (multilamellar membrane system) detected lipid species with the ability to both bind calcium and to enhance calcium transport across cell membranes (true ionophores). Pre-exposure to high d-glucose concentration led to a rapid (within 1 min) fall in membrane phosphoinositides. This was partially blocked by mannoheptulose. A concurrent fall in calcium bindig activity of lipids from the plasma membrane was observed. In the whole islet cell fraction, d-glucose induced a marked increase in Ca2+ ionophoretic activity. Unlike the fall in membrane polyphosphoinositides and membrane Ca2+ binding activity, these changes were dependent on the presence of added extracellular calcium. l-Glucose was without effect on membrane phosphoinositide content. It is concluded that altered membrane and intracellular phospholipids may contribute to the increased availability of intracellular Ca2+ following d-glucose stimulation by virtue of theie Ca2+ binding and ionophoretic properties.  相似文献   

16.
The synaptic vesicle protein synaptotagmin I (Syt I) binds phosphatidylserine (PS) in a Ca2+-dependent manner. This interaction is thought to play a role in exocytosis, but its precise functions remain unclear. To determine potential roles for Syt I-PS binding, we varied the PS content in PC12 cells and liposomes and studied the effects on the kinetics of exocytosis and Syt I binding in parallel. Raising PS produced a steeply nonlinear, saturating increase in Ca2+-triggered fusion, and a graded slowing of the rate of fusion pore dilation. Ca2+-Syt I bound liposomes more tightly as PS content was raised, with a steep increase in binding at low PS, and a further gradual increase at higher PS. These two phases in the PS dependence of Ca2+-dependent Syt I binding to lipid may correspond to the two distinct and opposing kinetic effects of PS on exocytosis. PS influences exocytosis in two ways, enhancing an early step leading to fusion pore opening, and slowing a later step when fusion pores dilate. The possible relevance of these results to Ca2+-triggered Syt I binding is discussed along with other possible roles of PS.  相似文献   

17.
Dependences of intracellular calcium signals on the concentrations of endogenous buffers (slow, parvalbumin, and fast, calmodulin) and a calcium-sensitive fluorophore (Fura-4F) were investigated on mathematical models of compartments of the reconstructed dendrite of a cerebellum Purkinje neuron. A Ca2+-storing cistern of the endoplasmic reticulum (ER) was present in the dendrite. Calcium signals developed when the neuron generated responses to single synaptic excitation or intrinsic non-periodical impulse activity. The dynamics of the buffer binding capacity were also studied; this capacity was characterized by the ratio of concentrations of bound and free calcium or concentration increments of the latter. The plasma membrane of the dendrite possessed ion channels (including those of synaptic currents) and the calcium pump characteristic of the mentioned neuron. Model equations took into account Ca2+ exchange between the cytosol, buffers, ER, and extracellular medium, as well as diffusion processes. The ER membrane contained the calcium pump, leakage channels, and channels of calcium-induced release and inositol-3-phosphate-dependent releases of Ca2+. The ER cistern occupied 1 to 36% of the intracellular volume. Upon different occupancies of the dendrite by the organelle store, an increase in the concentration of the slow buffer insignificantly decreased the cytosolic Ca2+ transients with no effect on their shape. The fast buffer and the dye with similar kinetic properties caused slowing down of the rising phase of Ca2+ transients, decrease in the early component, and increase in the late component of the latter. In the case of nonperiodical and asynchronous intrinsic oscillations of the membrane potential typical of asymmetrical active dendrites, the slow buffer, like the ER store, bound more Ca2+ in compartments of compatible sizes and fillings by the organelles belonging to those metrically asymmetrical branches, which, on average, stayed longer in the state of high depolarization; this provided a greater Ca2+ entry from outside. Hence, the pattern of structural/functional organization of calcium signalization in the dendrites can be complemented in the part of both the direct influences of local microgeometry of the dendrite and the indirect ones related to global macrogeometry of the dendritic arborization.  相似文献   

18.
Cytosolic calcium homeostasis is pivotal for intracellular signaling and requires sensing of calcium concentrations in the cytosol and accessible stores. Numerous Ca2+ binding sites have been characterized in cytosolic proteins. However, little is known about Ca2+ binding inside organelles, like the vacuole. The slow vacuolar (SV) channel, encoded by Arabidopsis thaliana TPC1, is regulated by luminal Ca2+. However, the D454/fou2 mutation in TPC1 eliminates vacuolar calcium sensitivity and increases store calcium content. In a search for the luminal calcium binding site, structure modeling indicated a possible coordination site formed by residues Glu-450, Asp-454, Glu-456, and Glu-457 on the luminal side of TPC1. Each Glu residue was replaced by Gln, the modified genes were transiently expressed in loss-of-TPC1-function protoplasts, and SV channel responses to luminal calcium were recorded by patch clamp. SV channels lacking any of the four negatively charged residues appeared altered in calcium sensitivity of channel gating. Our results indicate that Glu-450 and Asp-454 are directly involved in Ca2+ binding, whereas Glu-456 and Glu-457 are probably involved in connecting the luminal Ca2+ binding site to the channel gate. This novel vacuolar calcium binding site represents a potential tool to address calcium storage in plants.  相似文献   

19.
Voltage-gated calcium channels (VGCC) are involved in a large variety of cellular Ca2+ signaling processes, including exocytosis, a Ca2+ dependent release of neurotransmitters and hormones.Great progress has been made in understanding the mode of action of VGCC in exocytosis, a process distinguished by two sequential yet independent Ca2+ binding reactions. First, Ca2+ binds at the selectivity filter, the EEEE motif of the VGCC, and second, subsequent to a brief and intense Ca2+ inflow to synaptotagmin, a vesicular protein. Inquiry into the functional and physical interactions of the channels with synaptic proteins has demonstrated that exocytosis is triggered during the initial Ca2+ binding at the channel pore, prior to Ca2+ entry. Accordingly, a cycle of secretion begins by an incoming stimulus that releases vesicles from a releasable pool upon Ca2+ binding at the pore, and at the same time, the transient increase in [Ca2+]i primes a fresh set of non-releasable vesicles, to be fused by the next incoming stimulus.We propose a model, in which the Ca2+ binding at the EEEE motif and the consequent conformational changes in the channel are the primary event in triggering secretion, while synaptotagmin acts as a vesicle docking protein. Thus, the channel serves as the molecular On/Off signaling switch, where the predominance of a conformational change in Ca2+-bound channel provides for the fast secretory process.  相似文献   

20.
Wenjun Zheng  Han Wen 《Proteins》2020,88(11):1528-1539
The ryanodine receptors (RyR) are essential to calcium signaling in striated muscles. A deep understanding of the complex Ca2+-activation/inhibition mechanism of RyRs requires detailed structural and dynamic information for RyRs in different functional states (eg, with Ca2+ bound to activating or inhibitory sites). Recently, high-resolution structures of the RyR isoform 1 (RyR1) were solved by cryo-electron microscopy, revealing the location of a Ca2+ binding site for activation. Toward elucidating the Ca2+-modulation mechanism of RyR1, we performed extensive molecular dynamics simulation of the core RyR1 structure in the presence and absence of activating and solvent Ca2+ (total simulation time is >5 μs). In the presence of solvent Ca2+, Ca2+ binding to the activating site enhanced dynamics of RyR1 with higher inter-subunit flexibility, asymmetric inter-subunit motions, outward domain motions and partial pore dilation, which may prime RyR1 for subsequent channel opening. In contrast, the solvent Ca2+ alone reduced dynamics of RyR1 and led to inward domain motions and pore contraction, which may cause inhibition. Combining our simulation with the map of disease mutation sites in RyR1, we constructed a wiring diagram of key domains coupled via specific hydrogen bonds involving the mutation sites, some of which were modulated by Ca2+ binding. The structural and dynamic information gained from this study will inform future mutational and functional studies of RyR1 activation and inhibition by Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号