共查询到20条相似文献,搜索用时 15 毫秒
1.
Kumagai A Mizuno M Kato N Nozaki K Togawa E Yamanaka S Okuda K Saxena IM Amano Y 《Biomacromolecules》2011,12(7):2815-2821
The ability to synthesize cellulose by Asaia bogorensis, a member of the acetic acid bacteria, was studied in two substrains, AJ and JCM. Although both strains have identical 16S rDNA sequence, only the AJ strain formed a solid pellicle at the air-liquid interface in static culture medium, and we analyzed this pellicle using a variety of techniques. In the presence of cellulase, glucose and cellobiose were released from the pellicle suggesting that it is made of cellulose. Field emission electron microscopy allowed the visualization of a 3D knitted structure with ultrafine microfibrils (approximately 5-20 nm in width) in cellulose from A. bogorensis compared with the 40-100 nm wide microfibrils observed in cellulose isolated from Gluconacetobacter xylinus, suggesting differences in the mechanism of cellulose biosynthesis or organization of cellulose synthesizing sites in these two related bacterial species. Identifying these differences will lead to a better understanding of cellulose biosynthesis in bacteria. 相似文献
2.
Malimas T Yukphan P Takahashi M Kaneyasu M Potacharoen W Tanasupawat S Nakagawa Y Tanticharoen M Yamada Y 《Bioscience, biotechnology, and biochemistry》2008,72(3):666-671
Asaia lannaensis sp. nov. was described for two strains isolated from flowers of the spider lily collected in Chiang Mai, Thailand. The isolates produced acetic acid from ethanol on ethanol/calcium carbonate agar, differing from the type strains of Asaia bogorensis, Asaia siamensis, and Asaia krungthepensis, but did not grow in the presence of 0.35% acetic acid (v/v). The new species is the fourth of the genus Asaia, the family Acetobacteraceae. 相似文献
3.
K Matsushita K Takahashi M Takahashi M Ameyama O Adachi 《Journal of biochemistry》1992,111(6):739-747
Acetobacter methanolicus is a unique acetic acid bacterium which has a methanol oxidase respiratory chain, as seen in methylotrophs, in addition to its ethanol oxidase respiratory chain. In this study, the relationship between methanol and ethanol oxidase respiratory chains was investigated. The organism is able to grow by oxidizing several carbon sources, including methanol, glycerol, and glucose. Cells grown on methanol exhibited a high methanol-oxidizing activity and contained large amounts of methanol dehydrogenase and soluble cytochromes c. Cells grown on glycerol showed higher oxygen uptake rate and dehydrogenase activity with ethanol but little methanol-oxidizing activity. Furthermore, two different terminal oxidases, cytochrome c and ubiquinol oxidases, have been shown to be involved in the respiratory chain; cytochrome c oxidase predominates in cells grown on methanol while ubiquinol oxidase predominates in cells grown on glycerol. Both terminal oxidases could be solubilized from the membranes and separated from each other. The cytochrome c oxidase and the ubiquinol oxidase have been shown to be a cytochrome co and a cytochrome bo, respectively. Methanol-oxidizing activity was diminished by several treatments that disrupt the integrity of the cells. The activity of the intact cells was inhibited with NaCl and/or EDTA, which disturbed the interaction between methanol dehydrogenase and cytochrome c. Ethanol-oxidizing activity in the membranes was inhibited with 2-heptyl-4-hydroxyquinoline N-oxide, which inhibited ubiquinol oxidase but not cytochrome c oxidase. Alcohol dehydrogenase has been purified from the membranes of glycerol-grown cells and shown to reduce ubiquinone-10 as well as a short side-chain homologue in detergent solution.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Mikihiko Kawai Norie Higashiura Kimie Hayasaki Naruhei Okamoto Akiko Takami Hideki Hirakawa Kazunobu Matsushita Yoshinao Azuma 《DNA research》2015,22(5):357-366
Asaia bogorensis, a member of acetic acid bacteria (AAB), is an aerobic bacterium isolated from flowers and fruits, as well as an opportunistic pathogen that causes human peritonitis and bacteraemia. Here, we determined the complete genomic sequence of the As. bogorensis type strain NBRC 16594, and conducted comparative analyses of gene expression under different conditions of co-culture with mammalian cells and standard AAB culture. The genome of As. bogorensis contained 2,758 protein-coding genes within a circular chromosome of 3,198,265 bp. There were two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases: cyoABCD-1 and cyoABCD-2. The cyoABCD-1 operon was phylogenetically common to AAB genomes, whereas the cyoABCD-2 operon belonged to a lineage distinctive from the cyoABCD-1 operon. Interestingly, cyoABCD-1 was less expressed under co-culture conditions than under the AAB culture conditions, whereas the converse was true for cyoABCD-2. Asaia bogorensis shared pathogenesis-related genes with another pathogenic AAB, Granulibacter bethesdensis, including a gene coding pathogen-specific large bacterial adhesin and additional genes for the inhibition of oxidation and antibiotic resistance. Expression alteration of the respiratory chain and unique hypothetical genes may be key traits that enable the bacterium to survive under the co-culture conditions. 相似文献
5.
Acetic acid and hydrogen metabolism during coculture of an acetic acid producing bacterium with methanogenic bacteria 总被引:2,自引:0,他引:2
Two microorganisms originally existing as a mixed culture obtained from an anaerobic digester fluid were separated for pure and coculture studies. One of these was motile, Gram-negative, and non-sporeforming, and it required yeast extract for growth and acetic acid production. This isolate produced H2 and did not need H2 and (or) CO2 for growth and acetate formation. The other isolate was a methanogen whick resembled Methanobacterium arbophilicum in morphology and substrate specificity. Coculture growth of the two isolates in yeast extract broth (80% N2--20% CO2 gas phase) indicated that the non-methanogen produced up to four to five times more H2 than when grown separately. Although the growth of the non-methanogen was not enhanced by the removal of H2 by the methanogen, the hydrogen produced was essential for the growth of methanogen. Similar results were obtained when the non-methanogen was cocultured with Methanospirillum hungatti GP1. Cultivation of the non-methanogen in the presence of M. hungatti GP1 (under abundance of 80% H2--20% CO2) indicated that the acetate produced was consumed by M. hungatii, without inhibiting the growth of the other culture. 相似文献
6.
Elena Crotti Claudia Damiani Massimo Pajoro Elena Gonella Aurora Rizzi Irene Ricci Ilaria Negri Patrizia Scuppa Paolo Rossi Patrizia Ballarini Noura Raddadi Massimo Marzorati Luciano Sacchi Emanuela Clementi Marco Genchi Mauro Mandrioli Claudio Bandi Guido Favia Alberto Alma Daniele Daffonchio 《Environmental microbiology》2009,11(12):3252-3264
Bacterial symbionts of insects have been proposed for blocking transmission of vector‐borne pathogens. However, in many vector models the ecology of symbionts and their capability of cross‐colonizing different hosts, an important feature in the symbiotic control approach, is poorly known. Here we show that the acetic acid bacterium Asaia, previously found in the malaria mosquito vector Anopheles stephensi, is also present in, and capable of cross‐colonizing other sugar‐feeding insects of phylogenetically distant genera and orders. PCR, real‐time PCR and in situ hybridization experiments showed Asaia in the body of the mosquito Aedes aegypti and the leafhopper Scaphoideus titanus, vectors of human viruses and a grapevine phytoplasma respectively. Cross‐colonization patterns of the body of Ae. aegypti, An. stephensi and S. titanus have been documented with Asaia strains isolated from An. stephensi or Ae. aegypti, and labelled with plasmid‐ or chromosome‐encoded fluorescent proteins (Gfp and DsRed respectively). Fluorescence and confocal microscopy showed that Asaia, administered with the sugar meal, efficiently colonized guts, male and female reproductive systems and the salivary glands. The ability in cross‐colonizing insects of phylogenetically distant orders indicated that Asaia adopts body invasion mechanisms independent from host‐specific biological characteristics. This versatility is an important property for the development of symbiont‐based control of different vector‐borne diseases. 相似文献
7.
8.
9.
10.
Production ofL-lysine was followed in two lysine-accumulating mutants ofCorynebacterium glutamicum ATCC 13287 in media containing sucrose, ethanol, acetic acid or a mixture of acetic acid and ammonium or sodium acetate.
It was found that acetate is the best substitution for sucrose. 相似文献
11.
12.
Prust C Hoffmeister M Liesegang H Wiezer A Fricke WF Ehrenreich A Gottschalk G Deppenmeier U 《Nature biotechnology》2005,23(2):195-200
Gluconobacter oxydans is unsurpassed by other organisms in its ability to incompletely oxidize a great variety of carbohydrates, alcohols and related compounds. Furthermore, the organism is used for several biotechnological processes, such as vitamin C production. To further our understanding of its overall metabolism, we sequenced the complete genome of G. oxydans 621H. The chromosome consists of 2,702,173 base pairs and contains 2,432 open reading frames. In addition, five plasmids were identified that comprised 232 open reading frames. The sequence data can be used for metabolic reconstruction of the pathways leading to industrially important products derived from sugars and alcohols. Although the respiratory chain of G. oxydans was found to be rather simple, the organism contains many membrane-bound dehydrogenases that are critical for the incomplete oxidation of biotechnologically important substrates. Moreover, the genome project revealed the unique biochemistry of G. oxydans with respect to the process of incomplete oxidation. 相似文献
13.
ATP synthesis couple to Mn2+ oxidation was demonstrated with partially or wholly everted membrane vesicles from marine bacterial strain SSW22. The extent of ATP synthesis in these experiments was greater in earlier experiments. Chemiosmosis is the most probable mechanism for energy coupling because 2,4-dinitrophenol at appropriate concentrations stimulated Mn2+ oxidation by intact cells, membrane vesicles or extracts of strains SSW22, S13, and marine pseudomonad 16B. Externally added ADP stimulated Mn2+ oxidation by everted membrane vesicles of strain SSW22. This stimulation was oxygen-dependent. It is explained on the basis of a chemiosmotic model for energy coupling in Mn2+ oxidation. 相似文献
14.
Three different operation systems have been employed at laboratory, pilot plant and industrial scales. Developed experimentation has demonstrated that quantified ethanol losses minimize significantly when operating at low temperatures with low aerations and when mainly working with the closed system. 相似文献
15.
Isolation and characterization of a new, obligatory, anaerobic, methylotrophic, homoacetogenic bacterium is described. This bacterium is a mesophilic, motile, slightly curved rod that demonstrated a negative Gram reaction, formed spherical, (sub)terminal spores and performed a homoacetic fermentation with methanol, a CO2–2H2-gas mixture, glucose or fructose, respectively, as the substrate. The methanol fermentation proceeded only when a suitable amount of NaHCO3 was available in the nutrient solution supplied. 相似文献
16.
Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde. 总被引:3,自引:0,他引:3
The P450 2E1-catalyzed oxidation of ethanol to acetaldehyde is characterized by a kinetic deuterium isotope effect that increases K(m) with no effect on k(cat), and rate-limiting product release has been proposed to account for the lack of an isotope effect on k(cat) (Bell, L. C., and Guengerich, F. P. (1997) J. Biol. Chem. 272, 29643-29651). Acetaldehyde is also a substrate for P450 2E1 oxidation to acetic acid, and k(cat)/K(m) for this reaction is at least 1 order of magnitude greater than that for ethanol oxidation to acetaldehyde. Acetic acid accounts for 90% of the products generated from ethanol in a 10-min reaction, and the contribution of this second oxidation has been overlooked in many previous studies. The noncompetitive intermolecular kinetic hydrogen isotope effects on acetaldehyde oxidation to acetic acid ((H)(k(cat)/K(m))/(D)(k(cat)/K(m)) = 4.5, and (D)k(cat) = 1.5) are comparable with the isotope effects typically observed for ethanol oxidation to acetaldehyde, and k(cat) is similar for both reactions, suggesting a possible common catalytic mechanism. Rapid quench kinetic experiments indicate that acetic acid is formed rapidly from added acetaldehyde (approximately 450 min(-1)) with burst kinetics. Pulse-chase experiments reveal that, at a subsaturating concentration of ethanol, approximately 90% of the acetaldehyde intermediate is directly converted to acetic acid without dissociation from the enzyme active site. Competition experiments suggest that P450 2E1 binds acetic acid and acetaldehyde with relatively high K(d) values, which preclude simple tight binding as an explanation for rate-limiting product release. The existence of a rate-determining step between product formation and release is postulated. Also proposed is a conformational change in P450 2E1 occurring during the course of oxidation and the discrimination of P450 2E1 between acetaldehyde and its hydrated form, the gem-diol. This multistep P450 reaction is characterized by kinetic control of individual reaction steps and by loose binding of all ligands. 相似文献
17.
Niklas Bergstr?m Per-Erik Jansson Mogens Kilian Uffe B Skov S?rensen 《European journal of biochemistry》2003,270(10):2157-2162
Streptococcus mitis strain SK598, which represents a subgroup of biovar 1, possesses a unique variant of the C-polysaccharide found in the cell wall of all strains of Streptococcus pneumoniae and in some strains of S. mitis. This new variant lacks the choline methyl groups in contrast to the previously characterized forms of C-polysaccharide, which all contain one or two choline residues per repeat. The following structure of the repeating unit of the SK598 polysaccharide was established: where AAT is 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose. This structure is identical to the double choline-substituted form of C-polysaccharide, except that it is substituted with ethanolamine instead of choline. This extends the number of recognized C-polysaccharide variants to four. 相似文献
18.
19.
Matilde Manzoni Francesco Molinari Antonio Tirelli Fabrizio Aragozzini 《Biotechnology letters》1993,15(4):341-346
Summary This paper reports the production of 2-phenylacetaldehyde from 2-phenylethanol by acetic bacteria. Several strains of acetic bacteria were investigated and three were found to be effective for this bioconversion. Different conditions (different C source for the microorganisms, pH, substrate concentration, cell immobilization) were tested with yields ranging from 30 to 52.6%. 相似文献
20.
Purification and partial biochemical characterization of a human monocyte-derived, neutrophil-activating peptide that lacks interleukin 1 activity 总被引:49,自引:0,他引:49
J M Schr?der U Mrowietz E Morita E Christophers 《Journal of immunology (Baltimore, Md. : 1950)》1987,139(10):3474-3483
A novel monocyte-derived neutrophil-activating peptide (MONAP) produced by lipopolysaccharide- and phorbol myristate acetate-stimulated human peripheral blood monocytes was purified by sequential ion exchange-high performance liquid chromatography (HPLC), size exclusion HPLC, and reversed phase HPLC. Biologic activities of the purified cytokine were monitored by either an enzyme release assay or a chemotaxis assay, using peripheral human neutrophils. Purified MONAP was found to be homogeneous, giving a single peak on size-exclusion HPLC, reversed-phase HPLC, as well as a single 10-kDa band on silver-stained polyacrylamide gels. Purified MONAP stimulate human neutrophil chemotaxis at an estimated molarity of 5 x 10(-11) M. Half-maximal enzyme release of cytochalasin B pretreated neutrophils occurred at 2 to 3 x 10(-10) M, whereas superoxide anion production elicited by various concentrations of MONAP was found to be low. Isolated human peripheral monocytes, as well as human eosinophils, showed no chemotactic response to MONAP, indicating neutrophil specificity. MONAP activity was separated from thymocyte-stimulating activity by reversed-phase HPLC, indicating nonidentity with interleukin (IL)-1. This was further supported by heat resistance of MONAP, which is in contrast to the heat sensitivity of IL-1. In addition, IL-1 obtained as a by-product during isolation of MONAP did not stimulate human neutrophil chemotaxis. 相似文献