首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excess thymidine induced premature senescence in normal human fibroblasts (TIG-7), with induction of typical senescence markers. Nuclear swelling, as well as cell swelling, was clearly observed in these senescent cells. Simultaneous addition of MAP kinase inhibitors, U0126, SB203580, and SP60025, effectively suppressed induction of premature senescence and senescence markers.  相似文献   

2.
The field of research on cellular senescence experienced a rapid expansion from being primarily focused on in vitro aspects of aging to the vast territories of animal and clinical research. Cellular senescence is defined by a set of markers, many of which are present and accumulate in a gradual manner prior to senescence induction or are found outside of the context of cellular senescence. These markers are now used to measure the impact of cellular senescence on aging and disease as well as outcomes of anti‐senescence interventions, many of which are at the stage of clinical trials. It is thus of primary importance to discuss their specificity as well as their role in the establishment of senescence. Here, the presence and role of senescence markers are described in cells prior to cell cycle arrest, especially in the context of replicative aging and in vivo conditions. Specifically, this review article seeks to describe the process of “cellular aging”: the progression of internal changes occurring in primary cells leading to the induction of cellular senescence and culminating in cell death. Phenotypic changes associated with aging prior to senescence induction will be characterized, as well as their effect on the induction of cell senescence and the final fate of cells reviewed. Using published datasets on assessments of senescence markers in vivo, it will be described how disparities between quantifications can be explained by the concept of cellular aging. Finally, throughout the article the applicational value of broadening cellular senescence paradigm will be discussed.  相似文献   

3.
Chen JH  Ozanne SE  Hales CN 《DNA Repair》2005,4(10):1140-1148
The development of cellular senescence both by replication and by oxidative stress is not homogenous in cultured primary human fibroblasts. To investigate whether this is due to the heterogeneity in the susceptibility of DNA in different phases of the cell cycle, we subjected synchronised cells to oxidative stress and examined the extent of DNA damage and its long-term effects on the induction of cellular senescence. Here, we first show marked heterogeneity in DNA damage as detected by markers of double strand breaks caused by oxidative stress in an asynchronous human fibroblast culture. Cell cycle synchronization followed by oxidative stress demonstrated that DNA in S-phase is most susceptible to oxidative stress whereas DNA in the quiescent phase is most resistant. DNA repair is an ongoing process after sensing DNA damage; reparable DNA damage is repaired even in cells that contain persistent DNA damage. The extent of persistent DNA damage is tightly correlated with permanent cessation of DNA replication and SA-beta-gal activity. Oxidative stress encountered by cells in S-phase resulted in more persistent DNA damage, more permanent cell cycle arrest and the induction of premature senescence.  相似文献   

4.
The dermal papilla, located in the hair follicle, expresses androgen receptor and plays an important role in hair growth. Androgen/Androgen receptor actions have been implicated in the pathogenesis of androgenetic alopecia, but the exact mechanism is not well known. Recent studies suggest that balding dermal papilla cells exhibit premature senescence, upregulation of p16INK4a, and nuclear expression of DNA damage markers. To investigate whether androgen/AR signaling influences the premature senescence of dermal papilla cells, we first compared frontal scalp dermal papilla cells of androgenetic alopecia patients with matched normal controls and observed that premature senescence is more prominent in the dermal papilla cells of androgenetic alopecia patients. Exposure of androgen induced premature senescence in dermal papilla cells from non-balding frontal and transitional zone of balding scalp follicles but not in beard follicles. Overexpression of the AR promoted androgen-induced premature senescence in association with p16INK4a upregulation, whereas knockdown of the androgen receptor diminished the effects of androgen. An analysis of γ-H2AX expression in response to androgen/androgen receptor signaling suggested that DNA damage contributes to androgen/androgen receptor-accelerated premature senescence. These results define androgen/androgen receptor signaling as an accelerator of premature senescence in dermal papilla cells and suggest that the androgen/androgen receptor-mediated DNA damage-p16INK4a axis is a potential therapeutic target in the treatment of androgenetic alopecia.  相似文献   

5.
Lipodystrophic syndromes associated with mutations in LMNA, encoding A-type lamins, and with HIV antiretroviral treatments share several clinical characteristics. Nuclear alterations and prelamin A accumulation have been reported in fibroblasts from patients with LMNA mutations and adipocytes exposed to protease inhibitors (PI). As genetically altered lamin A maturation also results in premature ageing syndromes with lipodystrophy, we studied prelamin A expression and senescence markers in cultured human fibroblasts bearing six different LMNA mutations or treated with PIs. As compared to control cells, fibroblasts with LMNA mutations or treated with PIs had nuclear shape abnormalities and reduced proliferative activity that worsened with increasing cellular passages. They exhibited prelamin A accumulation, increased oxidative stress, decreased expression of mitochondrial respiratory chain proteins and premature cellular senescence. Inhibition of prelamin A farnesylation prevented cellular senescence and oxidative stress. Adipose tissue samples from patients with LMNA mutations or treated with PIs also showed retention of prelamin A, overexpression of the cell cycle checkpoint inhibitor p16 and altered mitochondrial markers. Thus, both LMNA mutations and PI treatment result in accumulation of farnesylated prelamin A and oxidative stress that trigger premature cellular senescence. These alterations could participate in the pathophysiology of lipodystrophic syndromes and lead to premature ageing complications.  相似文献   

6.
In this work, we present a new model of stress-induced premature senescence obtained by exposing human fibroblasts (WI-38) at early passages (passages 2-4) to a single sub-cytotoxic dose of UVB (200 mJ/cm(2)). We show that this treatment leads to the appearance of several biomarkers of senescence such as enlarged and flattened cell morphology, the presence of nuclear heterochromatic foci and beta-galactosidase activity. Furthermore, we demonstrate that a mild ROS production and p53 activation are upstream events required for the induction of premature senescence. Our method represents an alternative in vitro model in photoaging research and could be used to test potential anti-photoaging compounds.  相似文献   

7.
H2O2 has been the most commonly used inducer for stress-induced premature senescence (SIPS), which shares features of replicative senescence. However, there is still uncertainty whether SIPS and replicative senescence differ or utilize different pathways. 'Young' human diploid fibroblasts (HDFs), treated with prolonged low doses of hydrogen peroxide, led to irreversible cellular senescence. Cells exhibited senescent-morphological features, irreversible G1 cell cycle arrest and irreversible senescence-associated beta-galactosidase positivity. The appearance of these cellular senescence markers was accompanied by significant increases of p21, gadd45 expression and p53 binding activity, as well as a significant decline in DNA repair capability and accelerated telomere shortening. Our results suggest that multiple pathways might be involved in oxidative SIPS, including genes related to DNA-damage-and-repair and telomere shortening, and that SIPS shares the same mechanisms with replicative senescence in vivo. Our findings indicate that several aging theories can be merged together by a common mechanism of oxidative damage, and that the level of oxidative DNA-damage-and-repair capacity may be exploited as reliable markers of cell senescence.  相似文献   

8.
自噬在细胞复制性衰老中起着重要的作用.然而,早老细胞中的自噬现象基本无相关的报道.本文通过外源性过氧化氢(H2O2)的诱导,构建人胚肺二倍体成纤维细胞(2BS细胞)早老模型.首先,通过SA-β-gal染色,验证细胞早老;从形态学和特异标志分子及雷帕霉素作用的靶位点(mTOR)信号通路不同角度检测自噬的变化,其中形态学检测包括丹(磺)酰戊二胺(MDC)自噬分子定量法及电镜自噬超微结构的观察;特异标志分子LC3的检测包括GFP-LC3自噬定位法和免疫印迹法检测LC3;及检测mTOR信号通路下游激酶p70S6蛋白的表达变化.结果表明,过氧化氢诱导的早老细胞中自噬体相对年轻细胞明显增多,且具有保护早老细胞的作用.  相似文献   

9.
Primary human embryo lung fibroblasts and adult diploid fibroblasts infected by the human cytomegalovirus (HCMV) display beta-galactosidase (beta-Gal) activity at neutral pH (senescence-associated beta-Gal [SA-beta-Gal] activity) and overexpression of the plasminogen activator inhibitor type 1 (PAI-1) gene, two widely recognized markers of the process designated premature cell senescence. This activity is higher when cells are serum starved for 48 h before infection, a process that speeds and facilitates HCMV infection but that is insufficient by itself to induce senescence. Fibroblasts infected by HCMV do not incorporate bromodeoxyuridine, a prerequisite for the formal definition of senescence. At the molecular level, cells infected by HCMV, beside the accumulation of large amounts of the cell cycle regulators p53 and pRb, the latter in its hyperphosphorylated form, display a strong induction of the cyclin-dependent kinase inhibitor (cdki) p16(INK4a), a direct effector of the senescence phenotype in fibroblasts, and a decrease of the cdki p21(CIP1/WAF). Finally, a replicative senescence state in the early phases of infection significantly increased the number of cells permissive to virus infection and enhanced HCMV replication. HCMV infection assays carried out in the presence of phosphonoformic acid, which inhibits the virus DNA polymerase and the expression of downstream genes, indicated that immediate-early and/or early (alpha) genes are sufficient for the induction of SA-beta-Gal activity. When baculovirus vectors expressing HCMV IE1-72 or IE2-86 proteins were inoculated into fibroblasts, the increase of p16(INK4a) (observed predominantly with IE2-86) was similar to that observed with the whole virus, as was the induction of SA-beta-Gal activity, suggesting that the viral IE2 gene leads infected cells into senescence. Altogether our results demonstrate for the first time that HCMV, after arresting the cell cycle and inhibiting apoptosis, triggers the cellular senescence program, probably through the p16(INK4a) and p53 pathways.  相似文献   

10.
Normal cells possess a limited proliferative life span, after which they enter a state of irreversible growth arrest, called replicative senescence, which acts as a potent barrier against transformation. Transformed cells have escaped the process of replicative senescence and theoretically can not re-enter senescence. However, recent observations showed that transformed cells, and particularly the melanoma cells, can still undergo oncogene or stress-induced senescence. This senescence state is accompanied by many of the markers associated with replicative senescence, such as flattened shape, increased acidic β-galactosidase activity, characteristic changes in gene expression and growth arrest. Interestingly, in some cancers, senescence induction following chemotherapy has been correlated with a favorable patient outcome. In this review, we gathered recent results describing senescence-like phenotype induction in melanoma cells and discuss why senescence may also be exploited as a therapeutic strategy in melanoma.  相似文献   

11.
Aging is characterized by a gradual functional decline of tissues with age. Adult stem and progenitor cells are responsible for tissue maintenance, repair, and regeneration, but during aging, this population of cells is decreased or its activity is reduced, compromising tissue integrity and causing pathologies that increase vulnerability, and ultimately lead to death. The causes of stem cell exhaustion during aging are not clear, and whether a reduction in stem cell function is a cause or a consequence of aging remains unresolved. Here, we took advantage of a mouse model of induced adult Sox2+ stem cell depletion to address whether accelerated stem cell depletion can promote premature aging. After a short period of partial repetitive depletion of this adult stem cell population in mice, we observed increased kyphosis and hair graying, and reduced fat mass, all of them signs of premature aging. It is interesting that cellular senescence was identified in kidney after this partial repetitive Sox2+ cell depletion. To confirm these observations, we performed a prolonged protocol of partial repetitive depletion of Sox2+ cells, forcing regeneration from the remaining Sox2+ cells, thereby causing their exhaustion. Senescence specific staining and the analysis of the expression of genetic markers clearly corroborated that adult stem cell exhaustion can lead to cellular senescence induction and premature aging.  相似文献   

12.
A rice mutant, designated pse(t) (premature senescence, tentatively), was isolated from a T-DNA-inserted transgenic population. Senescence advanced more markedly in pse(t) than in wild-type ('Zhonghua 11', japonica) plants. Genetic analysis of pse(t) revealed that the premature senescence mutation was controlled by a single recessive nuclear gene, but that it was not induced by T-DNA insertion. In an effort to understand the genetic and molecular basis underlying premature senescence in rice, a map-based cloning strategy was used to localize Pse(t). High-resolution mapping of the Pse(t) locus was carried out using simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) markers. An F2 population, comprising 1691 pse(t) individuals derived from a cross of the pse(t) mutant with 'Longtepu' (indica), was constructed. Several new polymorphism markers were developed in this study. Genetic linkage analysis showed that the Pse(t) gene was located on the long arm of chromosome 7. It was found that the Pse(t) gene cosegregated with 3 markers and was flanked by markers SS22 and PP21. Thus, the Pse(t) gene is located within a genetic distance of 0.15 cM, corresponding to a physical distance of 220 kb. These findings provide the basic information that can be used for the final isolation of this gene in the rice premature-senescence pathway.  相似文献   

13.
The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy‐controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the response of primary human cells and murine hematopoietic stem cells (HSCs) to aneuploidy induction and the role of telomeres and the telomerase in this process. The study shows that aneuploidy induces replication stress at telomeres leading to telomeric DNA damage and p53 activation. This results in p53/Rb‐dependent, premature senescence of human fibroblast, and in the depletion of hematopoietic cells in telomerase‐deficient mice. Endogenous telomerase expression in HSCs and enforced expression of telomerase in human fibroblasts are sufficient to abrogate aneuploidy‐induced replication stress at telomeres and the consequent induction of premature senescence and hematopoietic cell depletion. Together, these results identify telomerase as an aneuploidy survival factor in mammalian cells based on its capacity to alleviate telomere replication stress in response to aneuploidy induction.  相似文献   

14.
Senescence is a stable proliferative arrest induced by various stresses such as telomere erosion, oncogenic or oxidative stress. Compelling evidence suggests that it acts as a barrier against tumour development. Describing new mechanisms that favour an escape from senescence can thus reveal new insights into tumorigenesis. To identify new genes controlling the senescence programme, we performed a loss‐of‐function genetic screen in primary human fibroblasts. We report that knockdown of the M‐type receptor PLA2R (phospholipase A2 receptor) prevents the onset of replicative senescence and diminishes stress‐induced senescence. Interestingly, expression of PLA2R increases during replicative senescence, and its ectopic expression results in premature senescence. We show that PLA2R regulates senescence in a reactive oxygen species–DNA damage–p53‐dependent manner. Taken together, our study identifies PLA2R as a potential new tumour suppressor gene crucial in the induction of cellular senescence through the activation of the p53 pathway.  相似文献   

15.
Although oncogenic ras plays a pivotal role in neoplastic transformation, it triggers an anti-oncogenic defense mechanism known as premature senescence in normal cells. In this study, we investigated the induction of cellular responses by different expression levels of oncogenic ras in primary human fibroblasts. We found that a moderate, severalfold increase in ras expression promoted cell growth. Further elevation of ras expression initially enhanced proliferation but eventually induced p16INK4A expression and senescence. The induction of these opposing cellular responses by ras signals of different intensity was achieved through differential activation of the MAPK pathways that mediated these responses. Whereas moderate ras activities only stimulated the mitogenic MEK-ERK pathway, high intensity ras signals induced MEK and ERK to higher levels, leading to stimulation of the MKK3/6-p38 pathway, which had been shown previously to act downstream of Ras-MEK to trigger the senescence response. Thus, these studies have revealed a mechanism for the differential effects of ras on cell proliferation. Furthermore, moderate ras activity mediated transformation in cooperation with E6E7 and hTERT, suggesting that a moderate intensity ras signal can provide sufficient oncogenic activities for tumorigenesis. This result also implies that the ability of ras to promote proliferation and oncogenic transformation can be uncoupled with that to induce senescence in cell culture and that the development of tumors with relatively low ras activities may not need to acquire genetic alterations that bypass premature senescence.  相似文献   

16.
17.
Caveolae are vesicular invaginations of the plasma membrane. Caveolin-1 is the principal structural component of caveolae in vivo. Several lines of evidence are consistent with the idea that caveolin-1 functions as a "transformation suppressor" protein. In fact, caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). We have previously demonstrated that overexpression of caveolin-1 arrests mouse embryonic fibroblasts in the G(0)/G(1) phase of the cell cycle through activation of a p53/p21-dependent pathway, indicating a role of caveolin-1 in mediating growth arrest. However, it remains unknown whether overexpression of caveolin-1 promotes cellular senescence in vivo. Here, we demonstrate that mouse embryonic fibroblasts transgenically overexpressing caveolin-1 show: 1) a reduced proliferative lifespan; 2) senescence-like cell morphology; and 3) a senescence-associated increase in beta-galactosidase activity. These results indicate for the first time that the expression of caveolin-1 in vivo is sufficient to promote and maintain the senescent phenotype. Subcytotoxic oxidative stress is known to induce premature senescence in diploid fibroblasts. Interestingly, we show that subcytotoxic level of hydrogen peroxide induces premature senescence in NIH 3T3 cells and increases endogenous caveolin-1 expression. Importantly, quercetin and vitamin E, two antioxidant agents, successfully prevent the premature senescent phenotype and the up-regulation of caveolin-1 induced by hydrogen peroxide. Also, we demonstrate that hydrogen peroxide alone, but not in combination with quercetin, stimulates the caveolin-1 promoter activity. Interestingly, premature senescence induced by hydrogen peroxide is greatly reduced in NIH 3T3 cells harboring antisense caveolin-1. Importantly, induction of premature senescence is recovered when caveolin-1 levels are restored. Taken together, these results clearly indicate a central role for caveolin-1 in promoting cellular senescence and they suggest the hypothesis that premature senescence may represent a tumor suppressor function mediated by caveolin-1 in vivo.  相似文献   

18.
Stem cells in adult organism are responsible for cell turnover and tissue regeneration. The study of stem cell stress response contributes to our knowledge on the mechanisms of damaged tissue repair. Previously, we demonstrated that sublethal heat shock (HS) induced apoptosis in human embryonic stem cells. This study aimed to investigate HS response of human adult stem cells. Human mesenchymal stem cells (MSCs) cultivated in vitro were challenged with sublethal HS. It was found that sublethal HS did not affect the cell viability assessed by annexin V/propidium staining. However, MSCs subjected to severe HS exhibited features of stress-induced premature senescence (SIPS): irreversible cell cycle arrest, altered morphology, increased expression of senescence-associated β-galactosidase (SA-β-gal) activity, and induction of cyclin-dependent kinase inhibitor p21 protein. High level of Hsp70 accumulation induced by sublethal HS did not return to the basal level, at least, after 72 h of the cell recovery when most cells exhibited SIPS hallmarks. MSCs survived sublethal HS, and resumed proliferation sustained the properties of parental MSCs: diploid karyotype, replicative senescence, expression of the cell surface markers, and capacity for multilineage differentiation. Our results showed for the first time that in human MSCs, sublethal HS induced premature senescence rather than apoptosis or necrosis. MSC progeny that survived sublethal HS manifested stem cell properties of the parental cells: limited replicative life span and multilineage capacity.  相似文献   

19.
Keratinocyte replicative senescence has an important role in time-dependent changes of the epidermis, a tissue with high turnover. Senescence encompasses growth arrest during which cells remain metabolically active but acquire a typical enlarged, vacuolar and flattened morphology. It is also accompanied by the expression of endogenous senescence-associated-β-galactosidase and specific gene expression profiles. MicroRNAs levels have been shown to be modulated during keratinocytes senescence, playing key roles in inhibiting proliferation and in the acquisition of senescent markers. Here, we identify miR-191 as an anti-proliferative and replicative senescence-associated miRNA in primary human keratinocytes. Its overexpression is sufficient per se to induce senescence, as evaluated by induction of several senescence-associated markers. We show that SATB1 and CDK6 3'UTRs are two miR-191 direct targets involved in this pathway. Cdk6 and Satb1 protein levels decrease during keratinocytes replicative senescence and their silencing by siRNA is able to induce a G1 block in cell cycle, accompanied by an increase in senescence-associated markers.  相似文献   

20.
何艳  刘静 《生命科学》2010,(5):411-415
细胞衰老是细胞脱离细胞周期并不可逆地丧失增殖能力后进入的一种相对稳定的状态,虽然基本代谢过程仍然能够维持,但丧失合成DNA及增殖能力。细胞衰老具有复制衰老、癌基因诱导的衰老及加速衰老等类型。衰老细胞具有细胞体积大而扁平、细胞停止分裂及SA-β-gal反应阳性等明显特性,复制衰老还具有端粒缩短到无法维持染色体结构完整性的特征。目前已知,p53-p21和p16-pRB在细胞衰老过程中起着重要的调控作用,细胞衰老对肿瘤的形成起着天然的屏障作用。通过抑制端粒酶活性来诱导肿瘤细胞衰老和通过胞外刺激或化学治疗药物诱导肿瘤细胞发生衰老样生长停滞,已成为抗肿瘤研究的新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号