首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ubiquitin‐dependent processes can be antagonized by substrate‐specific deubiquitination enzymes involved in many cellular functions. In this study, we show that the yeast Ubp3–Bre5 deubiquitination complex interacts with both the chaperone‐like Cdc48, a major actor of the ubiquitin and proteasome system, and Ufd3, a ubiquitin‐binding cofactor of Cdc48. We observed that these partners are required for the Ubp3–Bre5‐dependent and starvation‐induced selective degradation of yeast mature ribosomes, also called ribophagy. By contrast, proteasome‐dependent degradation does not participate in this process. Our data favour the idea that these factors cooperate to recognize and deubiquitinate specific substrates of ribophagy before their vacuolar degradation.  相似文献   

4.
5.
The tumor suppressor p53 plays a prominent role in the protection against cancer. The activity of p53 is mainly controlled by the ubiquitin E3 ligase Mdm2, which targets p53 for proteasomal degradation. However, the regulation of Mdm2 remains not well understood. Here, we show that MARCH7, a RING domain‐containing ubiquitin E3 ligase, physically interacts with Mdm2 and is essential for maintaining the stability of Mdm2. MARCH7 catalyzes Lys63‐linked polyubiquitination of Mdm2, which impedes Mdm2 autoubiquitination and degradation, thereby leading to the stabilization of Mdm2. MARCH7 also promotes Mdm2‐dependent polyubiquitination and degradation of p53. Furthermore, MARCH7 is able to regulate cell proliferation, DNA damage‐induced apoptosis, and tumorigenesis via a p53‐dependent mechanism. These findings uncover a novel mechanism for the regulation of Mdm2 and reveal MARCH7 as an important regulator of the Mdm2–p53 pathway.  相似文献   

6.
Ovalbumin mRNA precursors were found to be almost quantitatively associated with the hen oviduct nuclear matrix. On the other hand, only one-third of the mature ovalbumin mRNA of whole nuclei was recovered in the nuclear matrix fraction. The binding of both the high molecular weight mRNA precursors and the mature-sized mRNA to the matrix displayed no difference in stability against salt, urea, or detergents. The mature mRNA, however, was found to be released selectively from the matrix by ATP. In contrast, the mRNA precursors remained completely bound to the nuclear substructure in the presence of ATP. Detachment of mRNA from the matrix also occurred in the presence of ADP, AMP plus pyrophosphate, or ATP analogs that contain nonhydrolyzable alpha, beta and beta, gamma bonds. Contrasting with the ATP-induced effect, addition of poly(A), ethidium bromide, or the copper chelator 1,10-phenanthroline to oviduct cell matrices caused an unspecific liberation of both mature and immature ovalbumin messengers. The release of the mature mRNA by ATP was found to be strongly inhibited by both nonintercalative and intercalative inhibitors of type II topoisomerase. These results suggest that the selection of the mature mRNAs for nucleocytoplasmic transport occurs at the release stage from the matrix (i.e. before translocation through the nuclear pore) and that reactions hitherto known to cause changes in the DNA secondary structure are associated with the detachment of mRNA from the nuclear substructure.  相似文献   

7.
Zhou  Jiahui  Li  Zhiyue  Zhao  Qun  Wu  Tianding  Zhao  Qiancheng  Cao  Yong 《Neurochemical research》2021,46(4):945-956
Neurochemical Research - Spinal cord injury (SCI) is a serious neurological disease. Long non-coding RNA (lncRNA) small nucleolar RNA host gene (SNHG1) and microRNA-362-3p (miR-362-3p) were...  相似文献   

8.
《Molecular cell》2014,53(3):444-457
  1. Download : Download high-res image (303KB)
  2. Download : Download full-size image
  相似文献   

9.
10.
The eukaryotic N-end rule pathway mediates ubiquitin- and proteasome-dependent turnover of proteins with a bulky amino-terminal residue. Arabidopsis locus At5g02310 shows significant similarity to the yeast N-end rule ligase Ubr1. We demonstrate that At5g02310 is a ubiquitin ligase and mediates degradation of proteins with amino-terminal Arg residue. Unlike Ubr1, the Arabidopsis protein does not participate in degradation of proteins with amino-terminal Phe or Leu. This modified target specificity coincides with characteristic differences in domain structure. In contrast to previous publications, our data indicate that At5g02310 is not identical to CER3, a gene involved in establishment of a protective surface wax layer. At5g02310 has therefore been re-designated PROTEOLYSIS 6 (PRT6), in accordance with its ubiquitin ligase function.  相似文献   

11.
The main lesion of cisplatin nephrotoxicity is damage to proximal tubular cells due to increased apoptosis via the mitochondrial and death receptor pathways, which may be alleviated by appropriate promotion of autophagy. Fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-α) activator, is recently reported to promote autophagy as well as protect against cisplatin nephrotoxicity, although the mechanisms were only partially analyzed. Here, the detailed mechanisms of these putative protective effects were investigated in a murine renal proximal tubular (mProx) cell line. Fenofibrate attenuated cisplatin-induced apoptosis of mProx cells based on flow cytometry. As for the mitochondrial apoptotic pathway, the reagent reduced cisplatin-stimulated caspase-3 activation by decreasing the phosphorylation of p53, JNK, and 14-3-3, cytosolic and mitochondrial Puma accumulation, cytochrome C release to the cytosol, and resulting cytosolic caspase-9 activation. Fenofibrate also decreased cisplatin-stimulated activation of caspases-8 by suppressing MAPK and NFkB pathways and reducing the gene expression of TNF-α, TL1A, and Fas, main mediators of the death receptor apoptotic pathway. Autophagy defined by p62 reduction and an increase in LC3 II/I was promoted by fenofibrate in mProx cells under starvation. Autophagy inhibition using 3-MA further increased basal and cisplatin-induced caspase-3 and -8 activation, but had no influence on the inhibitory effects of fenofibrate on caspase activation. In conclusion, our study suggests fenofibrate to be a candidate agent to mitigate cisplatin nephrotoxicity by inhibiting the mitochondrial and death apoptotic pathways rather than by promoting autophagy.  相似文献   

12.

Background

Glucose restriction in cells increases the AMP/ATP ratio (energetic stress), which activates the AMPK/p53 pathway. Depending upon the energetic stress levels, cells undergo either autophagy or cell death. Given that the activated p53 induces the expression of IFI16 protein, we investigated the potential role of the IFI16 protein in glucose restriction-induced responses.

Methodology/Principal Findings

We found that glucose restriction or treatment of human diploid fibroblasts (HDFs) with the activators of the AMPK/p53 pathway induced the expression of IFI16 protein. The induced levels of IFI16 protein were associated with the induction of autophagy and reduced cell survival. Moreover, the increase in the IFI16 protein levels was dependent upon the expression of the functional ATM protein kinase. Importantly, the knockdown of the IFI16 expression in HDFs inhibited the activation of the ATM/AMPK/p53 pathway in response to glucose restriction and also increased the survival of HDFs.

Conclusions/Significance

Our observations demonstrate a role for the IFI16 protein in the energetic stress-induced regulation of autophagy and cell survival. Additionally, our findings also indicate that the loss of IFI16 expression, as found in certain cancers, may provide a survival advantage to cancer cells in microenvironments with low glucose levels.  相似文献   

13.
《Autophagy》2013,9(3):341-345
Autophagy is an innate immune defense against bacterial invasion. Recent studies show that two adaptor proteins, p62 and NDP52, are required for autophagy of the bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). However, it is not known why two different adaptors are required to target the same bacterial cargo to autophagy. Here we show that both adaptors are recruited to bacteria with similar kinetics, that they are recruited to bacteria independently of each other, and that depletion of either adaptor leads to impairment of antibacterial autophagy. Depletion of both adaptors does not synergistically impair autophagy, indicating they act in the same pathway. Remarkably, we observed that these adaptors do not colocalize, but rather form non-overlapping microdomains surrounding bacteria. We conclude that p62 and NDP52 act cooperatively to drive efficient antibacterial autophagy by targeting the protein complexes they coordinate to distinct microdomains associated with bacteria.  相似文献   

14.
Cemma M  Kim PK  Brumell JH 《Autophagy》2011,7(3):341-345
Autophagy is an innate immune defense against bacterial invasion. Recent studies show that two adaptor proteins, p62 and NDP52, are required for autophagy of the bacterial pathogen Salmonella enterica serovar Typhimurium (S. typhimurium). However, it is not known why two different adaptors are required to target the same bacterial cargo to autophagy. Here we show that both adaptors are recruited to bacteria with similar kinetics, that they are recruited to bacteria independently of each other, and that depletion of either adaptor leads to impairment of antibacterial autophagy. Depletion of both adaptors does not synergistically impair autophagy, indicating they act in the same pathway. Remarkably, we observed that these adaptors do not colocalize, but rather form non-overlapping microdomains surrounding bacteria. We conclude that p62 and NDP52 act cooperatively to drive efficient antibacterial autophagy by targeting the protein complexes they coordinate to distinct micro-domains associated with bacteria.  相似文献   

15.
Rotaviruses are double-stranded RNA viruses that are a major cause of viral diarrhea in infants. Examining virus–host cell interaction is important for elucidating mechanisms of virus proliferation in host cells. Viruses can create an environment that promotes their survival and self-proliferation by encoding miRNAs or miRNA-like molecules that target various host cell. However, it remains unclear whether RNA viruses encode viral miRNAs, and their regulation mechanisms are largely unknown. We previously performed deep sequencing analysis to investigate rotavirus-encoded miRNAs, and identified the small RNA molecule Chr17_1755, which we named RV-vsRNA1755. In our present study, we determined that RV-vsRNA1755 is encoded by the rotavirus NSP4 gene and that it targets the host cell IGF1R, which is part of the PI3K/Akt pathway. We further explored the biological characteristics and functions of RV-vsRNA1755.Our results suggest that rotavirus adapts to manipulate PI3K/Akt signaling at early phases of infection. RV-vsRNA1755 targets IGF1R, blockading the PI3K/Akt pathway and triggering autophagy, but it ultimately inhibits autophagy maturation. A mechanism through which rotavirus encodes a virus-like small RNA (RV-vsRNA1755) that triggers autophagy by targeting the host cell IGF1R gene was revealed. These data provide a theoretical basis for therapeutic drug screening targeting RV-vsRNA1755.  相似文献   

16.
5alpha-Androstane-3alpha,17beta-diol (3alpha-diol) is reduced from the potent androgen, 5alpha-dihydrotestosterone (5alpha-DHT), by reductive 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs) in the prostate. 3alpha-diol is recognized as a weak androgen with low affinity toward the androgen receptor (AR), but can be oxidized back to 5alpha-DHT. However, 3alpha-diol may have potent effects by activating cytoplasmic signaling pathways, stimulating AR-independent prostate cell growth, and, more importantly, providing a key signal for androgen-independent prostate cancer progression. A cancer-specific, cDNA-based membrane array was used to determine 3alpha-diol-activated pathways in regulating prostate cancer cell survival and/or proliferation. Several canonical pathways appeared to be affected by 3alpha-diol-regulated responses in LNCaP cells; among them are apoptosis signaling, PI3K/AKT signaling, and death receptor signaling pathways. Biological analysis confirmed that 3alpha-diol stimulates AKT activation; and the AKT pathway can be activated independent of the classical AR signaling. These observations sustained our previous observations that 3alpha-diol continues to support prostate cell survival and proliferation regardless the status of the AR. We provided the first systems biology approach to demonstrate that 3alpha-diol-activated cytoplasmic signaling pathways are important components of androgen-activated biological functions in human prostate cells. Based on the observations that levels of reductive 3alpha-HSD expression are significantly elevated in localized and advanced prostate cancer, 3alpha-diol may, therefore, play a critical role for the transition from androgen-dependent to androgen-independent prostate cancer in the presence of androgen deprivation.  相似文献   

17.
Inflammation is a process that has been actively related with the onset of several neurodegenerative disorders including Alzheimer disease (AD). However, the precise implications of inflammatory response for neurodegeneration have not been elucidated. A current hypothesis considers that extracellular insults to neurons could trigger the production of inflammatory cytokines by astrocytes and microglia. These cytokines, namely, interleukin (IL)-1beta, TNFalpha, and IL-6, could affect the normal behavior of neuronal cells. In the present study, we describe the effect of the administration at physiologic doses of one of these cytokines, IL-6, to hippocampal neurons, on the protein kinase pathways as well as on the tau phosphorylation patterns. IL-6-treated neurons exhibited an increase in the amount of anomalously hyperphosphorylated tau protein in epitopes dependent on proline-directed protein kinases (PDPKs). On the basis of our data, the observed increase of tau epitopes of Alzheimer type is explained by an increase of intraneuronal levels of p35 activator and in the activity of the protein kinase cdk5 in response to this cytokine. Further confirmation of cdk5 involvement in this process was based on the findings that inhibition of the kinase activity with butyrolactone-I prevents the appearance of tau of Alzheimer type in IL-6-treated neurons. Additional studies suggest that an increase of cdk5 activity could be mediated by a known signaling cascade described for IL-6 function, namely, the MAPK-p38 signaling pathway. Stimulation of the IL-6 pathway appears to increase the tau epitopes of Alzheimer type, as demonstrated in studies with specific inhibitors. These results support the findings of a pathologic role for IL-6 in the neuroinflammatory response as related with the pathogenesis of neuronal degeneration.  相似文献   

18.
Cyclin-dependent protein kinase 5 (cdk5), a member of the cdk family, is active mainly in postmitotic cells and plays important roles in neuronal development and migration, neurite outgrowth, and synaptic transmission. In this study we investigated the relationship between cdk5 activity and regulation of the mitogen-activated protein (MAP) kinase pathway. We report that cdk5 phosphorylates the MAP kinase kinase-1 (MEK1) in vivo as well as the Ras-activated MEK1 in vitro. The phosphorylation of MEK1 by cdk5 resulted in inhibition of MEK1 catalytic activity and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. In p35 (cdk5 activator) -/- mice, which lack appreciable cdk5 activity, we observed an increase in the phosphorylation of NF-M subunit of neurofilament proteins that correlated with an up-regulation of MEK1 and ERK1/2 activity. The activity of a constitutively active MEK1 with threonine 286 mutated to alanine (within a TPXK cdk5 phosphorylation motif in the proline-rich domain) was not affected by cdk5 phosphorylation, suggesting that Thr286 might be the cdk5/p35 phosphorylation-dependent regulatory site. These findings support the hypothesis that cdk5 and the MAP kinase pathway cross-talk in the regulation of neuronal functions. Moreover, these data and the recent studies of Harada et al. (Harada, T., Morooka, T., Ogawa, S., and Nishida, E. (2001) Nat. Cell Biol. 3, 453-459) have prompted us to propose a model for feedback down-regulation of the MAP kinase signal cascade by cdk5 inactivation of MEK1.  相似文献   

19.
Xu  Lingang  Sun  Nan  Li  Guangshuai  Liu  Linbo 《Molecular and cellular biochemistry》2021,476(3):1477-1487
Molecular and Cellular Biochemistry - Keloid is a skin disease characterized by fibrous hyperplasia, which is often difficult to cure. Long non-coding RNAs (lncRNAs) have been shown to be...  相似文献   

20.
Ubiquitin E3 ligases are important cellular components for endoplasmic reticulum (ER)-associated degradation due to their role in substrate-specific ubiquitination, which is required for retrotranslocation (dislocation) of most unwanted proteins from the ER to the cytosol for proteasome degradation. However, our understanding of the molecular mechanisms of how E3 ligases confer substrate-specific recognition, and their role in substrate retrotranslocation is limited especially in mammalian cells. mK3 is a type III ER membrane protein encoded by murine gamma herpesvirus 68. As conferred by its N-terminal RING-CH domain, mK3 has E3 ubiquitin ligase activity. In its role as an immune evasion protein, mK3 specifically targets nascent major histocompatibility complex class I heavy chains (HC) for rapid degradation. The mechanism by which mK3 extracts HC from the ER membrane into the cytosol for proteasome-mediated degradation is unknown. Evidence is presented here that HC down-regulation by mK3 is dependent on the p97 AAA-ATPase. By contrast, the kK5 protein of Kaposi's sarcoma-associated herpesvirus is p97-independent despite the fact that it is highly homologous to mK3. mK3 protein was also found in physical association with Derlin1, an ER protein recently implicated in the retrotranslocation of HC by immune evasion protein US11, but not US2, of human cytomegalovirus. The mechanistic implications of these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号